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Kinematics of fluid flows
1. The velocity field associated with a fluid flow given by u =20y, v =-20xy, w = 0.Find the

acceleration, the angular velocity and the vorticity vector at the point (1,-1,2).
The acceleration vector is given by

Thus, & = 20y?(—20yj) — 20xy(40yi — 20x])
= —800xy’i — 400(y® — x2y);.

Thus at (1,-1, 2), & is given by & = 800im /s’

The vorticityvector is given by

Q=(Q,, Q, Q,)

[(@@] (iuﬂj [@_@B
oy o6z) \az ox)'\ox oy
=(0, 0, (—20y —40y))=(0 ,0, —60y)
Hence, at (1, -1, 2), Q, = (0, 0, 60).
Thus, the x and y component of vorticity vector vanish whilst the z-component of vorticity

vector is given by Q:QZIA(:GOIzrad/s. Thus, the angular velocity at
(4,-1, 2) is given by (0, 0, 30).

Application of continuity equation
. Water flows at a uniform speed of 5m/s into a nozzle whose diameter reduces from
10cm to 2cm . Find the flow velocity leaving the nozzle and the flow rate.

Ans: From continuity equation, we have
Given g, =5m/s,d;, =01m,d, =0.02m

2 2
Thus, A, = n(%j m’, A, = n(o._gzj =n(0.01)*’m?.

Hence, from continuity equation A,q, = A,q, it is derived that



7(0.01)* xq, = n(0.05)* x5

=0, =125m/s.

Further, flow rate near the nozzle is obtained as
Q=A,q, =0.0125qm*/s.

Example of continuity equation in Cartesian co-ordinate system
. Show whether the velocity field associated with

u= Zay >y V= —%, w = 0. Represent the flow of an incompressible fluid.
X“+y X“+y
Ans: For incompressible fluid flow a—u+@+@ =0, where w_ 0
OX OX ©OX OX

Substituting for u,v and w, we have

ou  ov aw_a( ay ji[ ax j__ 2axy | 2xy o
X% +y? (x2+y2)2 (x2+y2)2 .

oX Ox  ox  ox oy -

x> +y°
Hence, the given velocity field is a possible incompressible flow.

. The x-component of the velocity field of an incompressible flow is given by
u= Ay. Determine v(x,y) if u(x,y)=0.

Ans: The continuity equation, in case of two-dimensional flow is given by
au + ol =0

x oy
:@:0 (as u = Ay)
oy
= v=k(x) (an arbitrary function of x)
= V(x,0)=0=k(x) = v(x,y)=0
NB: It is clear that for non-zerov, u(x,y) would have to vary with x or v(x,0) would have to
be non-zero. This is the case of a flow which is rotational as the z-component of vorticity
vectoris uy—vx=A=0.

. Given the x- component of the velocity of an incompressible plane flow by

u=5+ Zax > . Determine v(x, y) assumingv(x,0) =0.
X +y
ou a(xX*+y*)-2a a(y’-x)

AnS:&Z 2 2\2 (2 2\2
(x +y) (x +y)



Therefore, for an incompressible fluid, a = v

OX oy
2 2 2 2
Nowﬂzx;yz:w:a XY gyic=a—d e
oy (x2+y2) (x2+y2) X“+y
Thus, v(x,00=0=>c=0=v= Zay 5
X2 +y

Example of continuity equation in cylindrical polar co-ordinate system

. Show that the vector field

q, = a[l—rizjcos 0, q,= —a(1+ri2jcosesin 0, q,=0 represent a possible flow.

Ans. From equation of continuity, lﬁ(qr)+1£(qe)+i(qz) =0.
ror r oo 0z

laqr+laqe+aqz
ror roe oz

a 8{ (1—ij}cose—i(l+i2jcose

ror r r r
=3(1+i2jcose—i(1+i2jcose:0.

r r r r

Hence, the vector field represents a possible flow.

Here,

Axi-symmetric flow and continuity equation in spherical polar coordinate
. Show that the velocity field given by g, = a(l—%] coséd, q, = —a(1+i3]sin 0,q,=0
r r

represents the flow of an incompressible fluid.
Ans: The continuity equation for any symmetric flow in spherical and polar coordinate is
given by
1
—— ———(q,sin#) =0.
5 ( “q,) + Sin eae(qg )=
Substltutlng for q,, g, and q,,, itis clear that the continuity equation is satisfied.

Axisymmetric irrotational flow in cylindrical co-ordinate system
In cylindrical polar coordinate system, x=rcos@,y=rsind,z=z,where ris the distance

from origin and r is the radial distance from z -axis. The bodies of revolution coincide with

o 9

z-axisand u, =0. Further, u, =—, u, =—.
or 0z



Thus, in cylindrical co-ordinates system, the continuity equation reduces to

1M+% =0and in case of irrotational motion, ¢ satisfies
r or 0z
2 2 2
vz¢:1i(r%)+%:%+1%+% _o A
ror\ or) oz or° ror oz
- _ ou. ou
The vorticity vector is given byw = —-——=%,
o0z or
Further, stream function and velocity potential for axisymmetric flow are related by
Uz=la—‘/j, ur:_la_l//, u9=0 (B)
ror r oz
wherey is the stream function.For irrotational flow
ou, ou
W, =—L-—=%=0 C
© oz er ©)

which using (B) yields

2 2
0 1,/2/ 1oy N 0 t{ _0
o° ror oz
which is different from Laplace equation satisfied by ¢ in (A).

Axi-symmetric flow (streamlines are conical surface)
. Assuming the spherical coordinate system, discuss the flow associated with the velocity

Q

vector is given by u_ = , u, =0.
g y r 47[!’2 9
Ans: Given velocity vector u, = Q > U, =0
zr
Thus, u, -1 v 9_ Q. (A)

r’sind 00 or 4nr’
10 -1 oy
u==2__—= Y_g B
 ro6 r*sing or ®
From (A), -~ ¥ . Q _0v _Qsind_  _-Qcosd ¢,
resind 668 Arxr 00 A A

Further, > a_W:O:g(H):M, f(r):o :>y/:g(0)
resin@ or A7
Therefore, _ZQcosé
A
10¢ -
Further, ==X =0=>¢ = f(r
r oo ¢ ()
.0 Q -Q
Again, — = =>¢=——+9(0
g or  Axr? ¢ Axr 9(9)



Therefore ¢ = ﬁ
4y

Thus equipotential surfaces are spherical shells and streamlines are conical surfaces on which

& = constant.

Basic difference between a plane flow and an axi-symmetric flow.

Lines of constant ¢ and lines of constant y are not orthogonal for axi-symmetric flows for
irrotational motion, whilst lines of constant ¢ and lines of constant y are orthogonal for
plane flows. Thus, in plane polar coordinate in case of irrotational motion, the stream
function satisfy the Laplace equation whilst in axi-symmetric coordinate system, stream
function does not satisfy the Laplace equation. Table shows the basic differences among

various types of flows.

2-D  Cartesian

Polar Coordinate system

Axi-symmetric cylindrical polar

co-ordinate Co-ordinate system
system
Co- (x,y) X =rcos0,y=rsin0 X=rcos6,y=rsin6,z=z
ordinates
Velocity | (u,v) 1oy oy 1oy 10y
r T Aan e T T AT U =———,Uy=0, u,=——,
r oo or r oz ror
Irrotation | u, =v,,u, =-v, 10y _0J¢ _ loy _0d¢
al motion "roe  or " roz or
100 oy o _lov_ab
° roe  or ‘ror oz
Laplace 2 2 2 2
o | 22T [10[,0) 104 [10(,00), 0%
equation | gx? gy ror\_or) r® o0 ror\_ or) oz
Vorticity | (o &) | 5_ 16[rawj+wzw v 1w Oy
o lax? T ay? o rorlor ) r? o002 o’ ror o7t

Irrotational flow, velocity potential and stream functions
Show that the streamlines associated with the flow whose velocity potential is

¢ =Atan~(x/y)are circular.
Ans.Given ¢ =Atan(x/y)

Thus, the relation between velocity potential and stream function yields

Ay

oy _06_ Ay
x> +y?

oy oOX

which on integration gives y = —%In(x2 +y?)+f(x).




o _oy _ AX +df_ AX

Further, — =
ox  X°+y® dx  xXP+y?

which yieldsﬂ =0.
dx

Thus, f =constant
=0, without loss of generality

Hence Therefore, y(X,y) = —%In(x2 +v?).

Thus, the streamlines are given by (X, y) = constant which yields x* + y* = constant.
Thus, the streamlines are concentric circles with centre at origin.

. The velocity potential for a two dimensional fluid flow is given by ¢ = (x —t)(y —t).Find the
streamlines at time t for the flow.
Ans: We have u=¢, =y, =(y—t) =y =(y—t)?/2+f(x)
Further, v=¢, =—y, =f'(x)
Thus, ¢, = (X—t) =y, =—(x-1),
which yields y = —(x —t)* +g(y).

Therefore, %4‘ f(x)= —@ +9(y)

= (x—t)® +(y —t)* = constant
Thus (x—t)* +(y—t)® = constant yield the streamlines.
. The velocity potential for a flow is given by ¢(x,y,t) =(-3x+5y)coswt where @ is a
constant. Determine the stream function for the flow.
Ans: Given ¢ = (-3x+5y)cos wt
Thus, w, =¢, =-3cosat
=y =-3ycosawt + f(x)

Further, v, = 99 _ 5cosmt = ()
oy
= f(x) =5xcoswt + K (K is arbitary and is chosen as zero)
Thus, the stream function is given by = (5x —3y) cos wt.
2 2
. The stream function for a two-dimensional incompressible flow is :%+bxy—%,
where a, b and ¢ are known constants. Find the condition for the flow to be irrigational and
thus find the velocity potential for the flow.



2 2
Ans: Given the stream functiony = axT + bxy —%,

2 2
Now, al/::a, 81/2/:
OX oy

Therefore, for the flow to be irrigational,

Viy=0=a-c=0
=a=c

Thus, for irrotational motion, a =c. Assuming the flow as irrotational, there exists a velocity
2

potential ¢(x,y)such that g =y, =bx—-cy = ¢ :b%—cxy+ f(y).

2

by

Further, ¢, =—cx+ f'(y) = -y, = —(ax+by) = ¢ = —axy Tt g(x).

2

bx by?

Thus, g(x) = f(y):T.

Hence, ¢(X,Y) =g(x2 +y®)—axy is the required velocity potential.

. Suppose the stream function are given by w(x,y) = xy which represent flow around a

rectangular corner. Find the velocity potentials for the flow if exist.
Ans: Given (X, y) = xy

Therefore V’y =0

Thus, the flow is irrotational.
Thus, there exists a velocity potential ¢ which will satisfy

u=4g, =y, =X
=¢=x"12+f(y) (A)
V=0, =-y,=-Y
=¢=-y*/2+g(x) (B)
From (A) and (B),
f(y)=-y?12, g(x)=x"/2

Thus ¢ :%(x2 -y?)



14. The velocity components associated with the two dimensional flow of an inviscid fluid are

15.

kx ky
u:)(z+ V=73
y Xty

points (1,0) and (3,0).

> Is the flow irrotational? Find the streamline passing through the

Ans: The fluid is irrotational, if a—u:@
oy oX

Now Mo 2K (A)
oy (X“+y°)” ox

Thus, the flow is irrotational.

Next, assume that y is the stream function, thus

oy —kx
- Ty Xty
y
:w:—ktan‘l(lj+ f(x) (B)
X

where f (x) is an arbitrary function.
Further, from (A) and (B),

V:_aqu zky 2 zky 2+fl(x)
oX X4y X +y
= f (xX)=0= f(x)=c (A constant) (C)

Hence, (B) and (C) yields

w=—ktan™ (l}c
X

For stream lines, y = constant
= tan’ll =K (A constant)= y = xtan K =kx, (K being a constant) (D)
X
Eq.(D) is the required streamline. Since the streamline passes through (1, 0), Eq.(D) yield

k=0.Thus, y=0 is the streamline passing through (1, 0). Further, since the streamline
passes through (3, 2), Eq.(D) yields y =(2/3)xas the other streamline.

The stream function associated with a flow field is given by w(x,y)=xy. Prove that the
motion is irrotational. Find the components of velocity and hence find the velocity potentials.

. o’y Oy
Ans: Given XY)=Xy =>——+ =0
w(X,y)=Xy ooy

Thus, the flow is irrotational. Let uand v bethe x and y components of velocity. Thus

U=y, =xandv=—y, =-V.



16.

17.

18.

Thus u=¢, =x = ¢=x*/2+g(y) (A)
V=g, =y = ¢=-y/2+ f(x). (B)
From (A) and (B), the velocity potential ¢ is obtained as ¢(x, y) = (x> + yz)/Z.

Describe necessary condition for the ¢=ax®+by®+cz® to be the velocity potential of

anirrotational motion of a fluid flow.
Ans: Let ¢to be the velocity potential, of an irrotational motion of a fluid, then

Vi =0 (A)
Given ¢=ax’+by’ +cz’ (B)
Equation (A) and (B) yields, a+b+c =0which is the necessary condition.

Relation between velocity potential and stream function in polar co-ordinate
Find the stream function associated with the two-dimensional incompressible flow with

2 2
velocity components given byv, = u(l—a—zj cosé, v, =—Uu (1+a—2}sin9. Hence, obtain the
r r

stream lines.

Ans: Let i be the stream function associated with the flow.
. 1

Since, u, = 1ow = v _ ru

r oo 00 '

2
= :Jrurdezu[r—aT]sin9+ f(r)

2
Further, v _ u £1+ a—zjsin o+ f(r)
or r

2 2

Now v, =—aa—l’//:—u (1+a—2Jsin O+ f(r)=-u (1+a—2}sin6’
r r r

= f'(r)=0, = f(r)=constant=0 (w.l.g.)

2
=y :u[r—a—Jsine
r

2

Thus, u (r —a—Jsin 6 = constant gives the streamline for the flow.
r

Application of Bernoulli’s equation in steady state and vortex motion
Assuming that the pressure far from a tornado in the atmosphere is zero gauge. If the velocity
at r=20m.in 20m/sfind the velocity and pressure at r = 2m (Hint: Assume that the tornado

is modeled as anirrotational vortex with density of air p=1.2kg/m?).

9



Ans.In case of the tornado, it is assumed that the flow is circular in nature with v, =0,v, =0.
Further, it is given that r = 20m, v, = 20m/s.
Thus, v,=-I/2nr
=T =2nrv,=2nx 20x 20=—800mm’ / s
Hence, the velocity at r =2m is given by
_ ' _ -800m
2nr 2nx2

Assuming thatthe motion is irrotational, the pressure is given by
2

p= —V—Ze — 24000p,.

=200m/s.

0

The negative sign in pressure refers to vacuum. This negative pressure which creates a
vacuum causes the roots of building to blow off during a tornado.

Two dimensional irrotationalflow and streamlines
19. Discuss whether the flow is irrotational.

_ —ay  —ax
= ) !O
q {XZ + y2 X2 + y2 j

Ans. Itis easily verified that

9 z—ayz _9 Z—axz =0 except at origin. Thus flow is irrotational except at
oy\ X +y X\ X +y

(x,¥) =(0,0).

20.The velocity field associated with an irrotational incompressible fluid flow in 2-D given by

u=2x, v=—ty where x and y are in meters and t is in seconds. Find the equation of stream
line passing through (2,-1) at t=4s.
Ans: Let ¢ be the velocity potential and y be the stream function associated with the flow
field. Thus, the equation of streamlines are given by

dx d dx d

TV X T2y
Integrating both sides, it is derived that

1
In x +§In y = constant
= In x?y = constant
= Xx?y =¢ (a constant).

Since, the streamline passes through (2, -1), it is derived that ¢ =—4.
Hence, the streamline passing through (2,-1) has the equation x°y = —4.

10



21.

22.

Determine the condition for which the velocity vector u = ax+by, v=cx+dy will represent
the flow of an incompressible fluid. Show that the streamlines of this motion are conic
sections in general and rectangular hyperbolas when the motion is irrotational.

Ans: Given u=ax+bhy, v=cx+dy

= 6—“ =a andﬂ =d
OX oy
For possible fluid motion, @+@ =0, whichyield a+d =0
ox oy
Now for the flow to be irrotational, 6_u = —@.
oy OX

Therefore, the velocity field will represent an irrotational motion of a fluid for a=d and
b = c. Next, to find the stream functiony , we have

oy by
Uu=——=ax+b =axy+—+ f(x
Y y=y=ay+= (X)
w cx’
Further v:a—:cx+dy:w:— 7+dxy +g(y)
X

Comparing the two expressions for the stream functiony , it is derived that

by? bx* .
Ve T axy + Twhlch represents a rectangular hyperbola.

Show that the velocity field given by u = 2cxy, v=c(a’+x*>—y?) represent the velocity
vector of an incompressible fluid flow. Hence, determine the stream functions and discuss
Ans: Given u=2cxy, v=c(a® +x*—-y?)

Th a_ 2cy N —2¢cy
U5 ox "oy
Now, au + (ol =0
oX oy
which ensures uand v are the velocity vector of an incompressible fluid flow.

Now u:%—"[/:20xy:>z//:cxy2+ f (x)
y

Further,v = —%—W =c(a®+x*-y?)
X

X3

=y =c(a2x+?— y2x) + f(y)

11



3

Hence f(x):—azcx—% and g(y)=0

2
Therefore, = —cx(a’ —X?— y%)

Thus, x(a’ —%3— y?) = constant yield the streamlines for the flow.

Two dimensional flow, stream function and vorticity vector
23. Find the relation between stream function and vorticity vector.

Ans. The vorticity vector Q in a two-dimensional flow has the component
~ 2 2 ~ ~
G| M Mg [_9 "’2’—6 Yk ==(Vip)k
oX oy ox° oy
NOTE: When the flow is irrotational, then only q=grad ¢, so that u=¢, and v =g, leading

toV’y =0 and V?¢ =0.

24. Show that the vorticity vector for any fluid flow satisfies satisfiesV-Q =0

Ans: Q=(Q Q Q) :[5_5, % X

ThereforeV-f):i N _ow +Q(@_6_uj+i ou_ov ~0
ox\oz oy) oy\ox oz) oy\oy oX

Streamlines and flow with constant vorticity
25. Find the streamlines for the flow with constant vorticity.
Ans: The vortcity vector in the two-dimensional flow is given by

(3 B

Further, for z=x+1y, Z =x-1ly,

w (X, y)can be represented as y(z,7).

Thus, oy =6l//'2+81//.§:6_w+8_1//
OX 0z OX 0L oXx o1 O

oy _@Wﬂﬁwﬁf_i(@_w_a_'/f]

and = =
oy o0z oy 0Or oy oz 07

Thus, Zizi—ii, 2i:i+ii
0z OXx oy 0L ox oy

12



2 2 2
o, 22202818, o2

ox2 o’ \ox oy )\ox oy 0207
Thus, flow with constant vorticity yields
() = constant
o’y
=V =4
Ve e

—y=1f(2)+ f_(7)+%QZT

where f is an arbitrary function of z.
Hence y can be rewritten as

W :%27+2if (2)

Thus, the flow with constant vorticityy consists of flow whose stream function is %zf
along with an irrotational motion whose complex potential is 2if (z).
26. The velocity component of a two-dimensional inviscid incompressible flow are given by
#ﬂz, v =-2X —;ﬂz. Find the stream function and vorticity vector.
2 2 2 2
(x*+y?) (x*+y?)
Ans: Let y be the stream function.
Yy
(XZ n y2 )1/2 !
¥y
2

which on integration yield y = y? +I( 2)1,2 + () =y + (X + ¥+ £ (X).
X2 +y

u=2y+

Then,u=y, =2y+

Further, v=—y, =—2X—-——— = p =X’ +(X*+ )/2)1/2 +9(y)-
(x2+y2)

From the above two expressions for y(x,y), we have , f (x) = x*, g(y) = y?
Hencey = x* +y* +(x* + yz)m.
Thus, X* + y* + (x2 +y° )1/2 = K (a constant) gives the streamlines.

Next, the vorticity vector is given by

Q:QZIZ:(a—u—@jI2=— PR S
oy Ox (x*+y?)

13



27. Find the vorticity associated with the velocity field G = (—ay, ax,0) and thus show that the

28.

vorticity vector associated with the flow constant.
. . dx. dy dz

Ans: Equations of streamlines are— = a_%&

—-ay ax O

= X’ + y* = constant are the streamlines.

Further, Q = curl(g) = NN _oak
ox oy

Thus, the vorticity vector for the flow remains the same everywhere. Here, the flow is
rotational.

Streamlines are same does not imply motions are same (rotational / irrotational)
Consider the flow field with velocity components being given by u=-wy, v=wx and w=0.
Find the stream function and thus the streamlines. Draw the basic difference between this

flow and the flow whose velocity potential is given by g=minr, r=/x*+y*.

Ans: For the first flow,
u=wy, v=wx, w=0
Here, a +ﬂ =0
oX oy
Thus an incompressible fluid flow is possible.
However, a_v =2w=0
oy OX

Hence, the flow is not irrotational. Thus, velocity potential does not exist for the flow. Here,
Eqn. of the streamlines are given by

o _dy _dz
u v w

I
wy —-wx O

Ist two equation gives x>+ y* = constant, z = constant.

The particles are following a circular path with centre at origin. On the other hand, for the
second flow

W =g+iy =ikInz=ikInr—k@, z =re"
= ¢=k0, yw=Kinr
Now, y = constant = x* + y* = constant which are the streamlines.
2 2 2\ _ny2
Here,al//: 2X zjafz(x ";Y)fo
oX X°+y OX (x“+y9)
oy _ Yy Oy _ (X +y") -2y
= . 2 A 2, 2\2
o X +y oy (x*+y7)

14



29.

2 2
Therefore, a—‘/szr oy =0.
ox* oy’
Hence, the flow is irrotational. Thus, in the second case, the flow is irrotational and particles
follow a circular path whilst in the first case, the fluid motion is rotational.

Irrotational vortex or potential vortex - irrotational flow except at origin - Example of a
flow for which streamlines are circular and flow need not have vorticity everywhere

Discuss the flow characteristics for the velocity vector given by u, = E, u, =0, u,=0.
r

Ans. Here, the vorticity at any point in the flow is given by
10u,
==-_ == 0==
e rar( ) r 00 rar( )
Thus, the flow is irrotational everywhere except at the origin.

Now, around a contour of radius r, the circulation is
27
r=|"ru,de=2nc

which shows circulation is a constant and independent of the radius.
Further, using Stokes theorem

r:jQ.dA

For a contour enclosing the origin, since ' =2nc#0

_[QdA #0 = Q) = 0 somewhere within the area enclosed by the contour.

A

Since I' is independent of r, the contour can be shrink without altering T". Thus the area can

be shrinking so that Q@ must be infinite in order to make Q.dA to be finite and non-zero.
Thus, the flow represented by u, =c/r is irrotational everywhere except at the origin where

the vorticity is infinite. Such a flow is called an irrotational vortex or potential vortex. It
may be noted that around a closed curve not containing the origin, the circulation is zero.
Further, the equations of streamlines are given by

dr_rdo_dz dr_rido_dz

ru, u 0 C 0

= dr =0, o0r r =constant

Therefore the streamlines are circles. This example illustrates that circular streamlines do not
imply that flow should have vorticity everywhere.

Rankine vortex:In case of a Rankine vortex, the vortex is assumed to be uniform within a
core of radius R and zero outside the core. For example; vortices like bathtub vortex or an
atmospheric cyclone have a core that rotates almost like a sold body which is approximately
irrotational at far field. Here, a rotational core exists as the tangential vector in an irrotational
vortex has an infinite velocity jump at origin.

15



30.

31.

Example of flow for which stream function exists but velocity potential does not exist.
Give an example of a flow for which the stream function exist but velocity potential does not
exist.
Ans. Consider the flow field represented by the velocity vector
§ = (wy, wx,0)
Here, curlg = 2ok # 0
Thus the flow is rotational in nature and thus the flow is not of potential type.
Hence, ¢ will not exist. On the other hand, the equation of streamlines are given by
dx dy dz
—wy ox 0
which yields that the streamlines are given by
x* + y? = constant, z = constant.

Thusy = x* + y?is the required stream function

Flow field and vortex lines

The velocity vector in the flow field is given by § =i (Az—By)+ j(Bx—Cz)+k(Cy — AXx)
with A, B and C being non-zero constants. Determine the equation of the vortex lines.

Ans: The velocity vector is given by =i (Az - By) + j(Bx—Cz)+k(Cy — Ax).

Thus, the vorticity vector is given by

] j k
9 9 9 |aci+2Aj+2BK
OX oy 0z

Az-By Bx-Cz Cy-Ax
Therefore, Q =2C, Q, =A Q =B
Thus, equations of vortex lines are% = dx = & (A)

Q
Substituting for €, ©, and Q , Eq.(A) yield

Q=curlf=Vxg =

X :%z +k,y :Sz + k as the two infinite systems of vortex lines.

32. The velocity vector for an in compressible flow is given by

G = (Az—By)i +(Bx—Cz) ]+ (Cy— Ax)k,, where A, B and C are non-zero constants. Find

theequation of vortex lines.
Ans: The velocity vector for an incompressible flow field is given by

G =(Az—By)i +(Bx—Cz) ]+ (Cy— AX)k = u=Az—By, v=BXx—Cz, w = Cy - Ax
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33

34.

Hence, the components of vorticity vectors are
oW ov ou ow oV ou

Q=—-—=2C,Q =—-—=2A,Q,=—-—=2B
oy oz Yooz ox oz oy
Therefore, the equation of vortex lines are given by
O _dy dz
Q Q Q,
which yield
dx d dz
e == (A)
2C 2A 2B
Now %—Q:AX—Cy—c (B)
2C 2A '
dy dz
Further —=—=—=By-Az=c C
oA ZB:> y 2 (®)

Thus, the vortex lines are the intersections of the straight lines given by Eqg. (B) and Eq. (C).

Application of Bernoulli’s equation in steady state

Assuming that the wind speed in a storm is given by 30m/s, determine the force acting on
the 2mx3m door facing the storm. The door is in a highrise building and the wind speed is
not reduced due to ground effects. Use density of air p=1.2kg/m? and the fluid is inviscid

and incompressible.
Ans: Assuming the flow is steady and fluid is incompressible, Bernoulli’sequation yields

2 2 2 2
by h, =% P
29 pg 29 pg
It is assumed thatq, =0 (i.e., wind speed near the dooris g, =0).

2

Further, it is assumed that h, =h, and g, =0and the atmospheric pressure p, =0 which is
constant otherwise. Thus,
2 2
Po 8y —P% —195 45N/m2=540N/m?2.
Py 29 2
Now, total force on the door = px A =540x2x3=3240N.

Stream function and the complex potential
Find the complex velocity potential where the stream function y is defined by

w(X,y) = 2x(x* =3y?) + (X* = y*)/2 + axy.
Ans: Given y (X, y) = 2x(x* —3y?) +%(x2 —y:)+axy

Thus, u=¢, =y, =-12xy -y +ax

17



35.

= ¢=-6Xy—xy+ax’+ f(y) (A)
Further, v=¢, =y, =—6x* -6y’ + X+ay

= ¢=—6xy-3y’ +xy+ay’+g(x) (B)
From (A) and (B) f(y)=2y®—ay® and g(x) = ax’

which yield ¢(x,y) = a(x* —y?) - 2y(3x* — y*) —xy
Therefore,

W (2) = g+iy = a(x* —y*) - 2y(3x* — y*) — xy + {2x(x* —3y2)+%(x2 -y*)—axy}

=(a—il2)(x* = y*)—([1—ia)xy —2y(3x* — y?) + 2ix(x* =3y?)
=(a—i12)77 - (1-ia)xy —2(y* + x*) —6xy(x +iy)
This gives the required complex potential.

Complex potential (Doublets or flow around circles touching the x-axis)
Show that the complex potential w(z) = uaz/ z is associated with flow whose streamlines are
circles which touch the x-axis at origin. This is also referred as doublet.
Ans: Given the complex potential
ua’ ua’e™ __ua’sind _ ua’y

W(@)=—-= V= T2, 2
z r r X2 +y

The streamlines y = constant are circles which touch the x-axis at the origin. The motion is
due to a doublet at origin.

Complex potential (streamlines are coaxial circles with center on y-axis and
equipotentials are circles with center on x-axis which are orthogonal co-axial circles)

36a.Describe the flow for the complex potential given by W (z) = Ktanl%
T
: kK, 12 . K, i X+iy
Ans: Now W (z) =—tan™ — = ¢+iy =—tan
T C V4 C

which gives L A tan%(¢+ i)
c

Eliminating gand v , it is derived that
2 2
X +(y—ccoth ZﬂT‘//] :czcosechZMT‘//and(xmcoth %j +y? :czcosechz%.

Thus, the curves ¢ =constant and y = constant gives orthogonal co-axial circles, where the
circles with center on y -axis are streamlines and circles with center on Xx-axis yield the
equipotential surface.

18



Complex potential (Flow in a circular cylinder in the presence of source and sink)

36b.A source and a sink of strength mare placed at (+a/2,0) with a fixed circular boundary
x> +y? =a’. Find the streamlines for the flow.
Ans: From circle theorem we know if f(z) is the complex velocity potential for the flow
having no rigid boundaries and such that there is no flow singularities outside the circle
|zZ|=a. Then an introducing a rigid circular cylindrical surface of section [z|=a into the

flow, the new complex velocity potential for the flow within the boundary becomes
w(z)=f(2)+f(a’/z) for | <a.

The complex potential for a source and a sink of strength m located at (+a/2,0) with no
circular boundary is f(z) =—mIn(z-a/2)+min(z+a/2).When a circular cylinder of radius
|z|=a is introduced into the flow with the boundary, the new complex potential becomes

2 2
w(z) :—mln(z—a/2)+mln(z+a/2)—mIn{a——%}Jrm|n{a_+%}
Z Z

:m{ln(x+%a+iy]—ln(x—%a+iy)+In(2a+x+iy)—In(2a—x—iy)}.

Hence, y =m{tan™ yl —tan™ yl +tanl( y j+tanl( y j
X+—a X——a 2a+X 2a—X
2 2
2,2
=m{tan™ Zay 2—tan‘1a—)1 =mtan™ Say(r 1a)
4a° —r rz_Eaz (4a2—r2)(r2—§a2)+4a2y2

Now, y = constant yield (4a* —r*)(r’ —%az) +4a’y® = Ky(r* -a?),

which are the streamline equations with K being an arbitrary constant.

Complex potential (flow around a rectangular corner)
37. Discuss the flow pattern for the complex potential w(z) = z>.

Ans: Given wW(z) = z° = g +iy = x> — y* + 2ixy
= =2Xy
which yield xy = constant as the streamlines.

Thus, streamlines are rectangular hyperbolas representing flow around a rectangular corner.
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38.

39.

Complex potential and two dimensional flow (flow past a wedge)

Find the stream function and speed q for the complex velocity potential
w(z) =—ce ™2™, n=qa/z—a. Find cif |g|=U forr=1.

Ans: Given w(z) =—ce ™2™, n=a/(r—a)

Thus, w(z) = ¢ + iy = —ce "™ z"*

n+1,i{n(6-7)+6}

- _ Cemn (relg)ml: _ Ce—in;rrn+lei(n+l) =—cr
Therefore, ¢=—cr"*cos{n(@-=)+6}, w=—cr"*sin{n(0-r)+6}.

Hence w =0=0=q, 27—«

e

Thus, the streamlines are the flow past a wedge of angle 2« whose section is placed
symmetrically with z-axis. Further, the speed q is given by
2 _ dw dw
dz dz

Thus, for r=1, |g|=u then

‘ c’(n+1)°%r*"

u=c(n+l)=q=ur"

Thus, the speed at a distance r from vortex is ur".

Complex potential (stagnation point flow)
Determine the flow near a stagnation point in the xy plane.

Ans: Let ¢ be the stream function and origin be a stagnation point.
Hence, at the origin

%VX’ 0, ‘2‘;’ 0

Let =0 be at the origin.

Thus, in the xy plane, when x,y are small,  can be expanded as
w =ax’ +2hxy +by? +cx+dy +e+---

since y is assumed to be zero at origin, e=0

Further, , =0, w, =0 atoriginyield d =c=0

Therefore, y = ax® + 2hxy + by?

Thus, for x,y, small, v is approximated as

w =ax® + 2hxy +by?,

which represents two straight lines.
Further, when the flow is irrotational,

Viy =0
which yields a+b =0.
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40.

41.

42.

Find the stagnation point for the flow field given by W (z) = 2z + 3iz°.
Ans: Given W (z) = 2z + 3iz°

For stagnation point, C:jﬂ =0.=22+6i1z=0=>z2 :é.
z

Therefore, the point (0,1/3) is the stagnation point.

For the complex potential w(z) = ua(z/a)”’a , find the stagnation points.

Ans: For stagnation point(;—w =0.
z

Thus, forw(z) = ua(z/a)’”“ , the stagnation points are for 7a =0

Therefore, if 7 <a, the stagnation point is at infinity. On the other hand, if 7>« the
stagnation pointisat z =0.

Superposition of a uniform flow and a source (half body)

Discuss the flow generated due to the superposition of a source of strength m and an
uniformstream of speed u.

Ans: Here W(z) =uz+minz

¢+iy =u(x+iy)+m(nr+i0)
=y =ursind+mé, wherex =rcosé,y =rsind

Hence, MzO:Z:—m
dz u

Therefore, the stagnation point occurs at z = _m :
u
Thus, the value of the stream function passing through the stagnation point is

% :uy+mtan’11
X

: m .
=y =ursind+mé| _ (m y=u—sinz+mzr =mzx
m (r,H):(E,ﬂj u

7=——
u

Thus, the equation of the streamline passing through the point z = M s
u

ursind+mé =mrz (A)
Eq.(A) represents a semi-infinite body with a smooth nose and is known as a half body.

Potential flow against a fixed plane wall

43.Show that the velocity potential ¢ =a(x? + y? —22%)/2 represents the flow against a fixed

plane wall.
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44,

Ans: Given ¢ :%(x2 +y?-27%).

o 9 o

Thus, u=—/—=ax, v=—/—=ay, w=—=-2az.
OX oy 0z
2 2 2
Now,a f 0 ¢25+8 ?:a+a—2a:0
ox~ oy

Thus the flow is irrotational. The equation of the streamlines associated with the flow satisfy
Ox _dy_dz

u v oow
The equation 7 = a yield

VoW

gz _dy = y*z =k (a constant).

-2z 'y
Further, the equation ax = vy yield

u v
dx dy

— =— = X =cy, with ¢ being a constant.
ax ay

The intersection of the two curves gives the streamlines. These streamlines are often called a
cubic hyperbola and is the flow against a fixed plane wall.

Complex source potential and velocity potential for a flow
Show that the point source of strength on flow which is symmetrical in the radial direction is

given by W :Zﬂln z has the velocity potential ¢ which satisfies

T
Vig=ms(x), X=(xy)

) m m -
Ans: Given W =—Inz=—1Inre"
T 27

:>¢+iy/:%Inr+%9

Therefore, ¢:ﬂlnr, x//:m—e. Thus, the stream lines are given by

2 2
2 a¢
0 = k(a constant) = tan*(y/x) = k = y = cx. Further, since @Agﬁ -nds = J'a—rde =m, the
r

0

source strength is the rate of production of fluid per unit span.
Further, ¢ satisfies V*¢=0 except at origin.

m .m
However, ¢ =—Inr = lim—In(r’+ &%)
27 047
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45.

46.

47.

Thus, Vg = V* (ﬂm rj — lim L v2{In(r2+ &)}
27 =0 471

. m[o 10 : e’ -
=lim—{—+==1In(r’+ &%) = lim————=0(X
€0 4%{&2 r ér} (r+<) <=0 77(r’+ €?)? %)

=Z5(x)8(y) = 5(x)5(y) = 5(%), where X = (x, y) and  =/(x=%,)* +(y - y,) .
T

Show that the velocity potential #(x,y) :zﬂln | x—y| produced due to a source of strength
T

m satisfies V°¢ = md(x—y). The velocity potential ¢ is often known as the free space

Green’s function.
Ans: Proof follows from previous exercise.

Complex potential (flow in the presence of source and sink)

Consider a source and a sink each of strength m are located at distance c in either side of the
origin.

Ans: Assuming that the source of strength m is located (c,0) and sink of strength mis
located at (—c,0), the complex potential given by w(z) =-mIn(z+c)+mIn(z-c) which
yields ¢+iy=—-mIn(x+c+iy)+mlin(x—c+iy). Therefore, the stream function y is

obtained as
Yy ¥y
Y= mtan*—— —mtan*—— —mtan™ X=C X+CI_mtan™ 7 2 2(:2y_2 :
X—C X+C y X—C"+y
1+ 2 _ 2
X“—cC
Thus, the streamlines are given by ————— =tan— which is rewritten as
X"+y —-C m

X2 +y? —2cy cot - —c? =0, where v is assume to be constant.
m

The above streamline represents acircle with radius cy/cot” y/m+1and centre ccoty/m
lying on the y-axis. Each value of  will give a streamline.

Sources and sinks within a cylinder in a flow
Discuss the flow within a circular cylinder of radius a in the presence of a source and sink of

strength m located at (a/2, 0)and(-a/2, 0).

Ans: For a source of strength m at(a/2, 0) and sink of strength m located at (-a/2, 0), the
complex potential with no circular boundary is

f(z):mln(z—gj—mln[ugj
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2 2
Hence, f_(a_zj=m|n a _al_mnldid
z z 2 z 2

Thus, when a cylinder x* + y* =a? is inserted into the fluid, the complex potential at points
of its interior is

wo=ofs-5)-wfs-3)or(3-3-o(3-3)

:_m{|n(x+%+iyj—ln(x—%ﬂy}tIn(2a+x+iy)—|n(2a—x—iy)}

which gives
W =-m tanl( y J—tanl( y )+tan1( y j+tan1( y j
X+al?2 x—al2 2a+ X 2a—X
y Yy y .Y
—y =-m]tan" x—al2 y>§+a/2 +tant| 22=X y22a+x
N NPT 1=
X“—a“/4 4a” —x

_ _ 4ay _ ay
__m{tan 1(4a2_r2j—tan 1(r2—a2’4)}

5ay(a® —r?) J

(42’ —r®)(r*—a’/4)+4a’y’

Thus, the streamlines are given by y = constants which yields

(4a> —r?)(r* —a’/4) + 4a’y® = Ky(a® —r*)as the required streamlines with K being a
constant.

orz//:mtan‘l[

Superposition of sources and sinks

48.1f there are source located at (a,0), (—a,0) and sink at (0,a) and(0,—a) all of equal
strength in flow, then show that the circles through these points is a streamline.
Ans: Let W (z) be the complex potential associated with the flow having sourcesat (a,0),
(—a,0)and sinks at (0,a)and ((0,—a) each of strength m. Thus W (z) is given by
w(z)=min(z—a)+miIn(z+a)—mlin(z—ia)—mIin(z +ia)
= ¢+ =min(z’ —a®) —min(z* +a?)
=m{In(r’e®” —a’)~In(r’e*’ +a’)}

2249 _ 52

(r? cos26—a®) +ir’sin 26

(r?cos26+a*)+ir®sin20

=min
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49.

. r?cos20 L, r’sin20
Sy=m/tant————tant———
rcos20-a rcos20+a X—y
_ tan" x—tan"y=tan™
o 2ar?sin 26 1+xy
=mtan _
r*cos’20—-a*+r*sin® 26
=m(In(r’e*” —a%) - In(r’e™’ +a%)) (A)
Thus, the stream lines are given by
2a’r?sin 26
——— =k (A constant)
r‘-a
rt_gat

1
- % _Z_c(Sa
2a’r?sin20  k (Sa)

In particular, for ¢=0 r*=a‘’= r’=a’ \which are circles with centre at origin and of

radius a. Thus, the circle passes through the said points.
Alternately

w(z) =mIn(z® —a*)—min(z* +a%)

= ¢+ =min(x* — y* + 2ixy —a’) —mIn(x* — y* + 2ixy + a°)

2xy 02Xy
2_ 2 _ .2 2_ 2, .2
Thus, W=ta”_1%—tan_l%= B A
X°—y“—a X“—y +a 14 2Xxy . 2xy
Xz_yz_az x2—y2+a2
=tan™ 4a2xy ==tan! 48.2Xy .
(X2+y2)4_a4 (X2+yz+a2)(xz+y2_a2)

Hence, w = constant
4a*xy

1
= (¥ +y?+a?)(x* +y*-a’)

= K (a constant)

2 2 2 2 2_ 5
(x +y +a)(x +y a) Jaixy .

Thus, ¢ =0=> x*+ y> =a” which is the equation of a circle with centre at origin and passing
through the points as stated and is the required streamline.

In a two dimensional motion, sinks of strength m is placed at each of the point (-c, 0) and (c,
0) and a source of strength 2m is placed at the origin. Find the streamlines for the flow field.
Ans: Here the complex potential is given by

w(z) =-mIn(z-c)-min(z-c)+2minz =-mIn(z* —c*) + mIn z*
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50.

Hence, ¢+iy = -mIn(x® — y* —c? + 2ixy) + mIn(x* — y* + 2ixy)

Thus, y =-mtan™ —; 2x2y ~+mtan™ 22xy2
X“—y“—cC X -y
2Xxy 2Xxy
2 2 27 2 2 2
——mtant XY —C XY _ mgant — 22xy;: - —.
1+ 2x2y . 22xy2 (X* =y )(x* =y~ —c)+4x°y
X“—y“—c” X“-y

Thus, y = constant gives the streamlines.

2xyc?

=k
(XZ _ yZ)(X2 _ y2 _CZ) +4X2y2

Therefore, the streamlines are given by

e (X2 —y)(X* —y*—c?) +4x°y* =ke’xy

= (x* —y?)* —c?(X* — y?) + 4x?y? = kePxy

= (X2 +y?)? —c?(x* — y?) = ke’xy

= (x* +y?)? = c?(x* — y* + kxy) are the streamlines.
Further, the flow velocity is given by

dw| _|2mz  2mz | 2mc¢® _ 2mc?
[z | |2 -tz =et]

where r,, r,and r,are the distance of a fluid particle at any point from the sinks and source
respectively.

Complex potential for the faired entry into a long parallel sided channel.
Show that the complex potential z=e" +w represents a faired entry to a long parallel sided
channel for an incompressible fluid flow.

Ans: Given z=e"+w , (A)

where z=X+iy, W=g+iy

Hence, X +iy = ¢+ iy +e’*"

=g +e’ cosy +i(y +e’siny) (B)

Comparing real and imaginary parts of (B), it is derived that

X=¢+e’ cosy (C)

andy =y +¢e’ siny (D)

which can be rewritten as

Xx—¢=e’cosy andy —y =e’ siny (E)

Therefore, tany S Al AN $=x— y=vy (F)
X—¢ tany
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_yv

Substituting for ¢ from (F), it is derived that y =y +e ™V

siny

Thus, the streamlines are obtained from (F) by assumingy = constant .

In particular, v =+ /2 vyield

y=rx/2+¢€" (G)

andy=-7x/2—¢e™* (H)
Thus, Equations (G) and (H) together give the stream lines which behave like a faired entry
into a long parallel sided channel.

Complex potential (irrotational flow in a convergent divergent channel-streamlines are
rectangular hyperbolas)

51.Show that the complex potential w(z) = cosh 12 represents the irrotational flow in a
a

52.

convergent and divergent channel.
: z
Ans: Given w(z)=cosh™=.
a

Substituting z = x +iy, w = ¢ + iy, the complex potential w(z) is rewritten as
X +1iy = ccosh(¢+iy)
=ccoshpcosy +ic sinhdsiny
which yield x = ccosh ¢ cosy, y =csinh ¢siny.
Given the identity cosh® ¢ —sinh® ¢ =1, (C) yields

2 2
X [y 1
ccosy csiny

Now, y = constant yield that the streamlines are rectangular hyperbolas which are convergent

and divergent channels in a flow.Further using the identity cos®y +sin®y =1, it can be

2 2
derived that X + .y =1.
ccosh ¢ csinh ¢

Thus, ¢ = constant yield the equipotential surfaces which are given by

wherea and B are constants given by a =ccos¢ and § = csin ¢.

Complex potential for which streamlines are confocal ellipses
Discuss the flow whose complex velocity potential is given by z =ccosw, where c is a
constant.
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53.

Ans: Given z =cCcosw
= X+1iy =ccos(g+iy)
= X=ccoshy cos¢g, y=-csinhysing
Eliminating ¢,
2 2

X LY _
c’cosh’y  c’sinh®y

Thus, for i =k (a constant) yield
>y
s

where A=ccoshy, B=csiny are constants. Thus, the streamlines are confocal ellipses

whose semi-axes are A and B.

Further, iz _dz dw _ Jc2 —z2c? 7% which vanishes when z = +c which shows the

q° dw dz
flow speed is infinity at z=+c.

2 2

~1,

Complex potential (circular cylinder in an infinite fluid which is at rest at infinity)
Discuss the motion of a circular cylinder of radius a moving with velocity ualong the x- axis
in an infinite fluid which is at rest at infinity.

Ans. Assuming the flow as irrotational, there exist a velocity potential ¢(x, y) which satisfies

the Laplace equation. Since the circular cylinder is moving with velocity ualong the x-axis
which is at rest at infinity, the velocity potential ¢(x, y) satisfies the boundary conditions

given by
% =-ucosé, % =0 and 1% =0.
or|,_, or|._, roo|,._,

Using the condition at r =a, the velocity potential can be written in the form

o(r,0) = Ar cos¢9+Ecos 6, which using the wall boundary condition yield A—E2 =u. Next,
r a

using the condition at infinity, it is derived that A=0, B =ua®. Thus, the velocity potential is

ua®cosé

obtained as ¢ =——— . Next, to obtain the stream function for the flow, we will use the
r
two relations% = la—'//.
or r o6
. . . ua’sin@
Thus, the stream functiony (r,8) is obtained as w (r,/) = —————. Therefore, the complex
r

2 2

potential for the flow is obtained as w(z) =g+ iy = %(cose— isin 6?) _la
z
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54,

55.

Complex potential (Flow past a circular cylinder in the presence of circulation,
application of Blasius theorem)

Find the force and moment exerted on a circular cylinder of radius a centre at origin in a
uniform stream of speed u with circulationT.

Ans: The complex potential for the uniform flow past acylinder of radius a with circulation
I" is given by

2 2 .
W(Z)=U(Z+a—J—|—iF|nz Zd—wzu[l—a_zj_FE
z dz z z

Hence, by Blasius theorem

2 . Y
Y+iIX=-= (d_wj dz=-£ u+£—% dz
2\ dz 2 z z
o,

= —EZni (Residue of integrand atz=0)= —EZni(Zqu):anFu.

Further, the moment M is given by

:—£Re<j‘>z(d—w]dz:0.
2 dz

Complex potential (Uniform flow past a circular cylinder in the presence of circulation)
Find the stagnation point associated with the flow field for which the complex potential is
given byw(z) =u(z+a’/z)+ilInz.

Ans: The complex potential for a flow field is given by
2

ua“ .
w=uz+—+il'lnz
Z

Thus, in the polar co-ordinate system, the complex potential w(z) yields

r r

a 2 16 2 1/2
Thus, q| _ = (—¢j +(——¢j :2usin¢9+£.
r=a or roo r

r=a

2 2 2
¢=u[r+a7jcost9—l“9: q, =Z—¢=u[1—?—z)cose, P =%%:—u(l+a—2jsin 9—5.

Near a stagnation point speed vanishes, which yields 2usin&+I"=0. Therefore, when there
no circulation, I' =0 which gives that stagnation points are for 8 =0, . On the other hand,

in the presence of circulation, the stagnation points are given by
sing——
2ua
which is possible only when sin 6| <1 or |I'| < 2au.
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57.

58.

Case 1: For |F| <2au= |sin 0| <1.

Here, the stagnation point lies on the cylinder on a line below the centre parallel to x-axis.
Case 2: |F| =2au, in this case sin @ =-1. Here, the stagnation point coincides at the bottom

of the cylinder.
Case 3: If |F| > 2au, then there is no stagnation point on the cylinder. However, the stagnation

point will lie above the cylinder for I' >0 and below the cylinder for I'<0.

Superposition of complex potentials does not represent individual flow patterns
Prove that the complex potential W (z) :u(z+a2/z)—mln(z—zo) does not represent the

flow past a cylinder in the presence of the sink.

. dw
Ans: GivenW (z) =u(z+a*/z)-mIn(z—z,) :E=u(l—a2/zz)— —

It is obvious that at z=1z,, the flow does not represent a uniform flow past a cylinder.
Further, the flow speed should be g =2usin@ on the boundary of the cylinder at |z|=a in

case of uniform flow past a cylinder which is not the case here.

Show that the complex potential W(z)=u(z+a2/z)+mln(z—zo) does not represent the
uniform flow past a cylinder of radius a in the presence of a source of strength m located at
1=1,.

Ans: On the circle | z|=a, the stream function for the flow is not a constant which ensures
the cylinder is not a stream line.

Note: Criteria for additive property of sources in an uniform flow: When no boundaries
occur in the fluid, the motion due to an uniform flow, any number of source can be obtained
by addition of the corresponding complex potentials.

Complex potentials for vortex of strength k.
Describe the irrotational motion of an incompressible fluid whose complex potential is given
by w(z)=ikInz.
Ans: Given w(z) =ikInz =ik Inre” =ikInr —k@
= ¢=-k@,y =klInr
= = constant yields r = constant, which says that streamlines are concentric circles with

canter at origin. On the other hand, & = constant yields lines through origin cutting the
circles orthogonally.
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Complex potentials for irrotational flow produced by a line vortex
59. Show that the complex potential w(z)=-(il'/27z)Inz yield a singular distribution of

vorticity Q = T'5(x) concentrating at origin.
Ans: w(z) =—(il/2r)Inz

I VA S
27z, v 27
- . -T ? 190 . - )
Writin =lim—In(r’+&?) =>Viy=| —+-— |y =lim————— =-T'5(x), vields
vV =ax (<) v {8r2 rarjw =0 (r’+ &%) (0. y

Q=T3&(x) which shows that there is a singular distribution of vorticity Q=I&(x)
concentrated at the origin.The complex potential W (z) describes the irrotational flow
produced by a line vortex of strength I" concentrated at the origin.

60. The complex velocity potentialW (z) = (il'/27)In z describes the irrotational flow produced

bya line vortex of strength T" located at z=0.

Ans: Given W (2) LA = g+iy e = Wiy —ime
2r \ 2r 2

r . I
=y =—-Inr =lim—In(r’+ &’
v 2r 047 ( )

0 10 ] Ie?
Thus, Vi =| —+=— | = lim———— =T5(x
v [6r2 r 6r}/l =0 7(r’+€°)° ()

Hence, Q :Fa(x)lz, which says that the vorticity is Q =T'6(x) concentrated at the origin.
Here y = constant yields, r = constant, which says the stream lines are circles with center at
origin and the flow speed is g, = 109 = L.
rogd 2zr
Application of Joukowski Transformation (Uniform flow past an elliptic cylinder)
61. Using the circle theorem, find the uniform flow past an elliptic cylinder with a and b being
the semi-major and semi-minor axes and centre being at the origin.
Ans: In the z-plane, the complex potential for uniform flow past a circular cylinder of radius
(a+b)/2 isgiven by

w(z) =U (z+ (a”’)ZJ (A)
47

Now, the transformation
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Z:%(z+\/22—cz),wherecz:az—b2 (B)

maps the region outside an ellipse with a, b being the major and minor axes in the z-plane on
the region outside a circle with centre being at origin and radius r = (a+ b)/2. in the z-plane.

Thus, putting for z from (B) in (A), it is derived that

W(Z)Z%{H\/zz —c?+ (a+b)” }—E{zh/er (a+b)2(z4:2\,ZZ_C2)}

4z -c?)| 2
_u(a+b) z+\/22—c2+z—\/22—c2
2 a+b a-b '

Now substituting z = ccosh ¢ and using the results
z++z? —c®* =ccosh ¢ +csinh & =ce*, z—+/z*—¢® =ccosh ¢ —csinh & =ce™,

= w(z) ={u(a+b)/2} {ei(HO) + e’i(4’4°)} =u(a+b)cosh(¢ —¢,).

Hence, w(z) =u(a+b)cosh(¢ -¢,) , where z=ccoshd, ¢, =%In(a—+bj is the uniform

flow past an elliptic cylinder.

Application of Blasius theorem to uniform flow past an elliptic cylinder

Find the force and moment due to the uniform flow past an elliptic cylinder.

Ans: The complex potential associated with the uniform flow past an elliptic cylinder is
given by w(z) =u(a+b)cosh(§ -¢,)

wherez=ccosh¢, ¢, =%In(a—+2), ¢’ =a’-b?

dz d¢ dz dg/ dg csinh g
u(a+b) . z
= cosh{, —sinh §, ———.
{ ’ Ox/zz—cz}
2
Now : :1+C +...

Vz? ¢’ 22°

2 - 2 2 *Co -
Therefore, Ol—W:M e’ﬁuwh. :(d—WJ = A? e’240—%+... .
dz c 2z dz Z

2
Thus, by Blasius theorem, X —iY :lipgs (d_wj dz=0.
2 Jeldz
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U@ +b*)’esinh g
2 e c?

2
Further, M +iN = Real part—ﬁ (((jj_w] dz :—§27zi{ c
z

:pTﬂi(u(ac"’ b) jz {1—672?0 }

Writing &, =&, +in,

M +iN :%m(u(a:b)j {1-e? 1 (cos2¢, —cos 2¢,)

2
M} e?sinp,cosn,  (C)
c
. 1
We have ¢, =&, —in, ==In

(a+b]

2 \a-b

2 2

Further, (ajb) :uz(awbjzuzem0 (D)
C a-b

Hence from (C) and (D) M =—-zp(a® —b*)u’sina cosa.

Therefore, M = p;z{

Application of conformal mapping
Discuss the flow associated with the complex potential given by w= —iu/ Z%,

Ans. Writing Z=%(z+\/zz—c2), c’=a’-b’.

4iu 4iu(z—\/zz—c2 )2
Thus, w(z) =- == 5
(z+\/22—c2) (z+\/zz—c2)
—4iu(z2 +2° —c?+227° —cz) _4iu (CZE*ZM) _Ajye2¢
(o) B

Result:The streamlines associated with the general motion of a cylinder in two dimensions is

given by y(x,y) =ux—vy jtg(x2 +Yy%)+cwhere (u,v) are the components of linear velocity
and w is the angular velocity.
Complex potential (Elliptic cylinder rotating in an infinite mass of fluid)

Find the complex potential and stream function associated with an elliptic cylinder rotating in
an infinite mass of liquid which is at rest at infinity.
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y*

Ans: Let the cross-section of the elliptic cylinder be —+F =1where a and b are the semi-
a

major and semi-minor axes. Let {=a be the boundary of the cylinder. Then the

transformation
z =ccosh ¢ yieldsa=ccoshe, b=csinha.

Since the cylinder is rotating with angular velocity @, the general motion is of the form
[0
WZE(X2+)’2)+B, (A)
where B is the constant to be determined. Further, assuming
W (2) = —iAZ° = ¢ +iy = —IA(X +iy)*= —iA(X* — y* + 2ixy)

= ¢=2Axy, y=-AKX"-Yy’) (B)
Comparing (A) and (B), it is derived that

—A(X* - y?) :Q(XZ +y*)+B

2

which is rewritten as =1
D) o
2
y2
and is equivalent to—+—2 =1.
b
Thus, a” = - B pe : B @2 _p?y =A@ +b?)

Hence, from (B) it is derived that

a’-b’ o a’-b’
¢“’{njy W:E[m}xz‘yz’-

Result:Let the equation of boundary of the cross-section of a cylinder containing liquid is
given by zZ =f(z)+f(z) where f'(z) has no singularities within the cross-section. Then
the complex potential associated the cylinder containing the fluid which rotates about an axis
through the origin parallel to the generators is given by w(z) = iof (z). Then, y = ®zZ/2 on
the boundary.

Complex potential (Elliptic cylinder rotating in an infinite mass of fluid)
bZ

a’+b?

Using the above result, show that w(z) = i ( Jz is the complex potential associated

with the elliptic cylinder which rotates about an axis through the origin and is parallel to the
generator.
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2 2
Ans. The equation of an ellipse is given by %+g—2 =1 which can be rewritten as
—\2 —\2
Z+7 -7 z -7
( 2) ! 2) —1wherex =212 y:—Z Z
4a 4h 2 2i

Thus, the equation of the ellipse is rewritten as
b® {22 +7%+ 227} —a2{z2 +7° - 227} = 4a°b?
= (b*—a®)z% + (b* —a*)z* + 2zZ(b* +a*) = 4a°b?
282 2182 a2b2

=272 20 (@ b7 ()7 = (@b S ()
+

a’ a’+b? a’+b?

=77 =f(2)+f(2),

2 2 22
where f(z):l(a —b Jz%ﬂ

2| a® +b? a?+h?’
: _|1(a*-p? a’b? io(a®-Db? a’b*(io) .
Thus, =iof (=i =] ——— |22 +——=— 2 s the comple
s, w(z) =t (2) I®{2£a2+b2]2 +a2+b2} 2(a2+b2jz PO biex

potential for flow inside the cylinder where the constant term may be taken as zero without

loss of generality. Therefore w(z) = I?w[:j ;Ez Jzz is the required complex potential.
Potential flow between two concentric cylinders

Find the velocity potentials associated with the flow between two concentric cylinders when
the inner cylinder is moved suddenly with velocity u perpendicular to the axis of the cylinder
with the outer one being kept fixed.

Ans. Assuming that the flow is irrotational within the cylinders, the corresponding velocity
potential ¢(r,8) satisfies the Laplace equation. Assuming that the inner cylinder is of radius

a and outer cylinder is of radius b, the boundary conditions on the cylinders are given by

% ¢

=-ucosd, —| =0.
or

or |,
Here, the velocity potentials are assumed to be of the form

o(r,0) = [Ar +$)cos€+(Cr +$)sin 0

r=a

Using the boundary conditions, it is derived that
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S B B D D
which yield (A—gjz—u,[A—b—zj:O,[C—gJ:O, (C_b_zjzo'

Solving the above set of equations for A, B, C, D it is derived that
2 2182
A =%,B :l;Jza_k;Z andC=D=0.

2 2
Thus, ¢(r,0) :%[r +ij cos 6.

Further, it can be easily derived that the stream function for the flow is given by

-Ua? b2 ) .
r,@)=——| r+—|sinéd.
y(r,0) bz_az[ r}

Plane progressive gravity waves

The surface profile associated with the motion of a plane gravity wave is given by
n(x,t) = asin(kx — wt) . Determine the velocity potential ¢(x, y,t) .

Ans: In case of surface gravity wave, the velocity potential ¢(x, y,t) satisfies

V=0, (A)

subject to the boundary conditions

%+gn:00n y=0, (B)

ot
and the kinematic condition

n, =¢,0ny=0. (©€)
Further, the bottom boundary condition is given by

0¢
2 -0ony=-h. D
Y ony (D)

Sincen(x,t) = asin(kx — wt), the kinematic /dynamic boundary conditions ensure that ¢ must
be a cosine function. Thus, a separable solution can be assumed to be of the form

#(x,y,t) = f(y)cos(kx — wt), (E)

where f (y) to be determined.

Substituting for ¢ in equation (A), we obtain f satisfies

d?f

0y —k?f =0, (F)

36



68.

69.

whose solution is of the form

f(y) = Acoshk(h+y)+Bsinhk(h+y) (G)
withA, B being arbitrary constants. Substituting for f(y) from (G) in (E), condition (D)
yields

i =0ony=-h,

dy
which yieldsB =0.

Thus, ¢(x,y,t) is of the form ¢(x, y,t) = Acoshk(h+ y)cos(kx — wt) (H)
Substituting for ¢ in (B), it is derived that

Awcoshkh+ga=0= A:——ga
@coshkh
Further, from condition (C), it is derived that
o’ = gk tanh kh U]
Therefore, the velocity potential ¢for 7 = acos(kx —wt) is given by
o= —ﬂwcos(kx —wt) , where k satisfies the dispersion relation given in (I).
@  coshkh
Examples on plane waves
Find the wave length in terms of wave period in deep water under the small amplitude theory
and thus find the wave length for a 10s period in deep water.
Ans: From dispersion relation

o’ = gk (In case of deep water)

2 2
27} g 2= 1 seTim =527,
T A 2z

Therefore, ¢ = % =1.56Tm/s =5.12ft/sec.

Thus, in case of a 10sec. period wave in deep water, A =1.56(100)m =156m = 512ft.

A plane progressive wave is propagating of depth 100m having a period of 10s and height of
2m. Find the wave celerity and wave steepness.
Ans: Assume it is a case of deep water wave.

Thus A =1.56T2 =156m

Thus, the deep water wave assumption is justified.
Now ¢ =1.56T =15.6m/s

Wave steepness H = 2 =0.013
A 156
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A wave in water 120m deep has a period of 8s and height of 4m. Determine the wave
celerity,wavelength.

Ans: Assume deep water wave.

Thus, the dispersion relation gives

A=1.56(8)>m =99.82m

Therefore, wave celerity ¢ = % =1.56x8m/s =12.4775m/s

Here h = 126 > 1 , SO the deep water assumption is justified.
A 9982 2
A plane gravity wave is propagating in an infinitely extended channel of average depth 2.3m

and has a period of 10s.
Ans: Assumed that it is a case of shallow water.

Therefore ¢ =/gh =+/9.81x2.3 = 4.75m/s

and A =cT =4.75x10m=47.5m
Now h = 23 =0.048<0.05
A 4715

Hence, the assumption of shallow water wave is justified.

A plane progressive wave is propagating from deep sea normally towards the shore with
straight and parallel contours. In deep sea, the wave length and wave height are given by
300m and 2m respectively. Find the wave length, wave height and group velocity at a depth
of 30m near the shore line.

Ans: Given in a deep water 4, =300m, H, =2m

Since in deep water, 2 =1.56T2=T =+/1/1.56 =+/300/1.56 =13.868sec.
While travelling from deep sea to shallow sea the wave period remains the same. Now, in
water of depth 30m, assuming shallow water

c=./gh, :>%:,/gh2
= A, =T,/gh, =13.86819.8x30 =240.2m

From law of conservation of energy flux,
Ec, = constant

= Elcgl = Ezcgz

C 2kh
=C, =—<1+—
¢ 2 sinh 2kh
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In case of deep water,
c,=¢/2=1/2=300/13.868=10.912

On the other hand, in case of shallow water
C, =C=4/gh =+/9.8x30 =17.155m/s

Thus, A =cT =17.155x13.86 = 237.771m

It is not a case of shallow water as h/ A =30/337.771=0.126 > 0.05
Further, assuming deep water

A =1.56T2 =300.079

Therefore, h/ A1 =30/300.079=0.009<1/2

Hence, it is not the case of deep water.

Thus, to find k, we have to solve

o’ = gk tanh kh
It can be checked that k =0.03 = 4, =27/ k =209.33m
Therefore,c, =A/T =209.33/13.86 =15.103m/s

andc,, = S114 2K 1151081 1 61170) ~12.17mis
9“2 sinh 2kh 2

Therefore, from conservation of energy flux
H,’c,, = H,%c,,

22x10.822 = H22 x12.17

= H, =1.886m

Therefore, wave height at depth of 30m is 1.866m.

C

A plane progressive wave in water of 100m deep has a period of 10s and a height of 2m,
when it is propagated into water of depth 10m without refracting. Assuming energy losses
and gained are ignored, determine the wave height and water particle velocity and pressure at
a point 1m below the still water level under the wave crest.

Ans: Assume the wave propagating in deep water.

Thus, A =1.56T*m =156m

Now h/A1=100/156>1/2

Thus, deep water assumption is justified when water depth h=10m, T =10s, from the

dispersion relation »° = gk tanhkh yield

2
gT tanh 2—7m
A

1=
2r

Whose is solved to obtain
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A=933m =k = 277[ =0.0673

Now n=1 1+ _Zkh =0.873
2 sinh 2kh

Now from law of conservation of energy then
H =H,(c,,/c,)=1.97m

where subscript zero refers to waves in 100m deep. At appoint 1m below the still water level
under the crest cos(kx—wt) =1and y =1. Hence the hydrodynamic pressure at y =1, under

the crest is given by
P=—-pgy+ POH {COSh K(y+ h)}cos(kx—a)t)

2 cosh kh
1000x98x1.97 x cosh(0.0673x 9)
2cosh(0.0673)x10

Further, water particle speed at a point 1m below the crest is

u_;zH coshk(h+y)
T sinhkh

= —(100)(9.80)(~1) + ~19,113N/m?

=1.01m/s

A wave in water of 2.3 deep has a period of 10s and a height of 2m. Calculate the wave speed
and wavelength.
Ans: Assuming that a shallow water wave is propagating.

Thus c=./gh =/9.81x2.3 = 4.75m/s

and A=cT =4.75x10m =47.5m
Now E = ﬁ =0.048<0.5
A 475

Thus, the shallow water assumption is justified.

A wave in water of 100m deep has a period of 10s and height of 2m. Determine the wave
celerity, length and steepness.
Ans: Assume deep water wave is propagating.

Thus A =cT =156m = c = % =1.56T =15.6m/s

Now wave steepness = H = 2 =0.013.

A 156
A tsunami wave is propagating whose period 15min. and height is 0.6m at a depth of 3800m
Determine the speed of propagation of the wave along with the wavelength.

Ans: Assume the case of shallow water waves.

¢ =+/gh =+/9.81x 3800 =193m/s (695km/hr)
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A=cT =193x15x60m =1,73,700m
h 3800

A 1,73,700
Thus, the shallow water wave assumption is justified.

Now =0.021<0.05.

Determine the dispersion relation for a plane progressive wave propagating at the interface of
two superposed fluids, which are bounded above and below, assuming that the upper fluid of
density p, and depth h,, whilst the lower fluid is of density p, and depth h, .

Ans: Let 7 =acos(kx — wt) is the fluid interface and y =0 is the mean interface.

Thus, the velocity potentials for the upper and lower layer fluids are the forms

@ = Acosh k(h + y)sin(kx — mt), -h <y<0 1)

@, = Acoshk(h, + y)sin(kx — at), -h,<y<0 (2)

Using the continuity of velocity and pressure at the interface is same, the linearized interface
conditions are given by

p{%w:):p{%ng on y=0, @)
and%:% on y=0 (4)

From (3) and (4),
pl(a ¢l+g¢1yJ=p2(%+g¢2yj on y=0

ot’
Substituting for ¢, and ¢, in (4), it can be easily derived that
Asinkh, =—-Bsinkh,

gk(p, — ) _ gk@-s)
p, cothkh + p, cothkh,  scothkh, +cothkh,
Now in case of deep water, kh, >>1,kh, >>1, which yield
o gk@-s)

1+s

Further, in case of deep water, kh, <<1,kh, <<1, which yield

o2 = IKd-s)hh,
h? +sh,

and @® =

Determine the wave dispersion relation for wave propagating in an infinitely extended
channel in a two-layer fluid of density p, and p, having a free surface and an interface. The

upper layer is assumed to be of depth h and lower layer is of infinite depth.
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Ans: The velocity potential ¢ satisfies V°¢ in the fluid region along with bottom boundary
condition.

Let z=0 be the mean interface and z=h be the free surface.

On the mean free surface, ¢, satisfies

2
MJrg%:o at y=h

ot? oy
On the mean interface,
o4 _0¢,
oy oy
0° 0°
and s( 6t¢2}1 + g¢1yJ = a:fz +09¢, on y=0

The velocity potentials ¢ and ¢, satisfies the Laplace equation and bottom boundary

conditions
ggradg -0 as y >

It can be easily derived that

¢, = Ae¥ cos(kx — at), —w<y<0

¢ =(Be™ +Ce" ) cos(kx— at), 0<y<h

Using the conditions at free surface and the interface, it is derived that

—2kh
A=C-Band o? = gk, o= gk(p,—p,)(1—e 7)2kh= gkl-s)
(o +p,)+ (o + py)e s-+coth kh

One dimensional standing waves in a channel (small amplitude gravity waves)

Consider the propagation of standing wave in a one dimensional channel of uniform depth h
and length L . Assuming the wave profile is of the form 7 =acoskxcoswt . Find the
corresponding velocity potential. Thus discuss the various wave modes and the general
nature of the wave profile and velocity potential.

Ans: Assuming the small amplitude approximation, the velocity potential ¢(x,y,t) satisfies

V? =0, subject to the surface boundary condition is of the form

¢,+97=0 on y=0andg, +7 =0 on y=0

Further, the bottom boundary condition is given by

$,=0 on y=-h.

Further, assuming the channel is extended along x-axis from x=0to x=L, no flow
condition on the wall yields

%:O onx=0,L.

OX
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As in case of Example 1, here the velocity potential #(x, y,t) satisfies Eq. (A) and boundary
condition (C) is obtained in the form
#(x,y,t) = Acosh k(h+ y) cos kxsin mt
Since, ¢ satisfies boundary conditions (D),
so, k =n—”, n=12,...
L
Further, the use of the free surface condition leads to

-3 and ?= ghtanhkh .
@coshkh

Further, k, = nTﬂ will yield various wave modes associated with the wave motion.

Two dimensional standing waves in a channel (small amplitude gravity waves)

Consider the propagation of standing wave of the form 7(x, z,t) =acosk, xcosk,zcosat, in
a channel of uniform depth h, length a and width b. Find the velocity potential associated
with the wave motion.

Ans: Recapitulating, in this case, the velocity potential satisfies

2 2 2
g 9 9,

o oyt ozr A
The surface boundary conditions are given by

¢ +9n=0 on y=0, (B)
$,+m, =0 ony=0 ©)
Further, the bottom boundary condition is given by

$,=0 on y=-h. (D)

Assuming the channel walls are atx =(0,a), z=(0,b), the wall boundary conditions are
given by

¢ =0 atx=(0,a)
¢, =0 atx=(0,b)}

Proceeding in a similar manner as in Example 1, it is derived that

(E)

#(X,y,t) = Acoshk(h+ y)cosk,xcosk,zsin mt (F)

The wall boundary conditions yield

k="" k=™ mn=12,.. (G)
a b

Further, substituting for ¢ from (F) in (A), it is derived that
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k? = (%) +(nfj =k, (say).

Substituting for ¢ in the surface boundary condition, it is derived that

’ = ghtanhkh

ag coshk(h+y)

and ¢ = cosk, xcosk,zsin wt

@  coshkh
_ag cosh k(h+y)sin(mxjsin(mﬂ}ina)t
@  coshkh a b

So for each m,n, we have a velocity potential. Hence the superposition of all velocity
potentials is also a solution which is given by

¢= i i a9 coshk,, (n+y) sin(mx)sin (—mgzjsin wt

mi o @ coshk,,h a

Phase and group velocities for gravity waves

The dispersion for plane gravity wave in finite water depth is given by »’ = gk tanh kh
Find the relation group velocity in terms of phase velocity.

Ans: The phase velocity cc and the group velocityc, are given by
w A do

c=—=—and ¢, =—,
k T ¢ dk
Given @° = gk tanh kh

or sz—f — g tanh kh + gkhsec hkh

_do _1g 2kh }:lgktanhkh{lJr 2kh }
P dk 2w sinh2kh] 2 ko sinh 2kh

lw 2kh Cc 2kh
= 4 ——— =1+ — .
2k sinh2kh| 2 sinh 2kh

In case of deep water kh >>1 Therefore ¢, =c/2. On the other hand, in case of shallow
water waves, kh <<1 whichyieldc, =c.

=C tanh kh {1+

Phase and group velocities for capillary gravity waves
The dispersion relation »® = gk(1+Mk?)tanh kh associated with the plane capillary gravity

waves is given by K =k(1+Mk?)tanhkh,where K =»?/g,M =T/pg, T being surface
tension force. Find the relation connecting phase and group velocities cand c, respectively.
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Ans: From dispersion relation
o’ = gk(L+ Mk?) tanh kh

or 2a)‘i—f = g {(L+ Mk®) tanh kh + kh(L+ Mk®) sech’kh}

Jw
>

or ¢, ==—{(1+3Mk?) tanh kh + kh(L+ Mk®) sech’kh}

= 99 {(L+3MK?) tanh kh + kh(1+ Mk?) sech’kh}
29k (1+ MK?) tanh kh

a){1+3Mk2 2kh }_c{1+3Mk2 2kh}

"2k | 1xMkZ sinh2knh [ 2| 1+ MKZ " sinh2kh

Therefore, in case of deep water, kh >>1which yieldsc, =%{(1+ 3|\/|k2)/(1+ MkZ)}.

On the other hand, in case of shallow water, c :%{(1+ 2Mk2)/(1+ Mkz)}.

Capillary gravity wave
In case of capillary gravity wave, find the length of the smallest possible wave in terms of

surface tension parameter T . Thus, find A for
g =9.8m/s, T =0.074N/m and p =1000kg/m®.

Ans: From dispersion relation, in case of deep water K = k(1+ Mk?) = @ = gk tanh kh
Therefore,c® = w® 1 k* = g(1/k + MK)

dc
2c—=q(-1/k*+M
=2 a( )

Therefore, de =0

dk
=M =1/k?
=k=1/"M =pg/T
Therefore, k =/ pg /T

1/2

andc? = 9 _,_l g/T = ATg

m P
pylT p p

1/4
()
e,

= A, =21k =27(T | pg)"?
Next, for g = 9.8m/s*, p =1000Kg/m®, T =0.074N/m, ¢, =23cm/s, A =1.7cm.
This is the minimum wave length of gravity wave possible in water.
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Wave oscillation in a closed basin and resonant period
A section of a closed basin has a depth of 8m and a horizontal length of 1000m when
resonance occurs in this section at the fundamental period, the height of the standing wave is
0.2m. Determine the resonant period and wave length of the wave.
Ans: Given h=8m, L=1000m, H=0.2m.
Assuming shallow water wave, the fundamental period of oscillation is given by

2L 2000

T = =
Joh  9.81x8

Now, ¢ = % = )\ =CcT=9.8x8x 225.76m=2000m.

=225.76s

8 < i. Thus, the assumption of shallow water is justified.

Hence, h/A =
2000 20

Fundamental period in a one dimensional lake
Derive the fundamental period of oscillation for a lake of length 15miles having average
depth 22ft .

Ans: Given L =15miles, h = 22ft,g = 32ft/sec®. Further, it may be noted thatlmile = 5280ft.

Therefore, T = 2L = 2x5280x15 =5968sec=99.5min
Jah  32x22
2x15%x1609

Alternately, T = s =99.5min (using the formula 1 mile = 1.609 km).

J9.8x22x0.3048

Long wave equation in a channel of variable cross-section
Derive the equation of long wave in channel of variable cross-section A(x,t) which is

infinitely extended along the x-axis are small compared to the wavelength.
Ans: Let (u,v,w) be the components of the velocity § with u being large compared to v and

w. Thus the x-component of Euler’s equation of motion yields

ou 10

u__19% )
ot p OX

and the z-component yields

10

=P @)
p 0z

where the quadratic terms are ignored under the assumption of small amplitude wave theory.
Eq. (2) on integration yields
p=-pgz+Tf(x,t)
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Assuming at the free surface z ={(x,t), the hydrodynamic pressure is the same as the
constant atmospheric pressure Py, Eq. (2) yields

P=p,+p9(C-2) 3)

Next, using the value of p from Eqg. (3) in Eq. (1), equation of motion for long wave is
obtained as

ou oC

re —g&. (338)

Next, to derive the equation of continuity in case of long wave, consider a volume of liquid
bounded by two planes cross-section of the channel at a distance dx apart. Thus in unit time,

the volume of liquid through one plane of the channel is (Au), . Further the volume of liquid

flowing through the other plane of the channel is (Au) Thus, the net change in volume

X+dx *

of liquid flowing between the two planes per unit time is

(AU), .~ (A0), =28 g @
OX
Further, the rate of change in volume of liquid per unit time between the two planes is
0A
—dx. 5
p (5)

From the law of conservation of mass, rate of change of mass within the two planes = net
change in mass flowing between the two plane per unit time.Assuming the fluid is
incompressible, density is taken as constant. Thus, Eq. (4) and Eq. (5) yield

A oA (6)

ot OX

Eqg. (6) is the equation of continuity for long wave. Thus, Egs. (3a) and (6) yield the
linearized long wave equations under shallow water approximation in an infinitely channel of
variable cross section.

Long wave equation in a channel of finite width b
Generalise the equation of continuity discussed in Ex:1 for a channel of width b
Ans: Let A, be the cross-sectional area of the fluid in the channel in equilibrium position.
Assuming y ={(x,t) as the surface elevation, the change in the cross-sectional area due to
wave action is
A'=bC
Thus, equation (6) in Ex. 23 becomes
o(b J0(Au
%+ (8x : =0

b%+M =0 (7)

ot oX

or

47



88.

Differentiating Eq. (7) w.r.t. time t, we get
2
b%ﬁ(@j 0

ot2 ot ox
2
or ba—§+i(Aa—uj:0
ot-  oOX ot

2
or ba—i;+i A(—ga—uj =0
ot®  oX OX

2
or ba—f—gi(A%j =0.
ot ox\  0OX

If the channel is of uniform cross-sectional area A=A, then
3¢ gA, %G
o T
ot b ox
Thus, the speed of propagation in channel of uniform cross section A isc = ,/gA, /b.

Long wave propagation in a channel

Derive the long wave equation is a channel of infinite length in water of finite depth,
assuming wave amplitude is very small.

Ans: It is assumed that the z-component of velocity is very small compared to the x and y
components of velocities.

Thus, in case of 2-D wave equation, here, the long wave equation of motion yields

ML g%
ot "9 oX 0 A
N Lg%

and p +0 0 (B)

Further, proceeding in a similar manner as in case of channel of variable cross-section, the
Eq.of continuity for linear long wave yield

@Jr o(hu) N o(hv) 0 ©

ot oOx oy
Assuming total water depth h=h,+(x,y,t) where h, is the water depth from mean

surface till bottom, Eq. (C) yields
%+ o(h,u) N o(h,Vv) 0 (D)
ot OX 0z

which in case of constant depth h, becomes
%+ h, 8_u +h, Q =
ot OX 0z

0. (E)
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Eliminating u and v from (A), (B) and (C), the long wave equation in water of uniform depth

is obtained as
o, o1 0%

8X2 8y2 - CZ 61:2
where C = /gh,.

Long wave reflection due to change in depth near a wall
A plane wave is reflected due to abrupt change in water depth from depth h, to depth h,

which is at a finite distance | from a sea wall.
Thus, near the wall 7, =0
(e“<X + Re“kx)e —t %<0
Therefore, n(x,t) = _
Tcosk(x—1e™, 0<x<I
Continuity of pressure and velocity at x=0, yield
1+ R =T coskL.
Further, hik(1—R) =h,T sinkL

which yield
2/n n_ cotk,L+i/h, /h
Jh cosk,L—i/h, sink,L" cotk,L—i/h,/h

Long wave reflection by a finite dock near a wall

Wave reflection by a finite dock near a wall (Shallow water approximation)

A rigid dock of width a is located at a distance L from a vertical wall in uniform water
depth. Assuming the at the sea wall is at x=a+L and dock is located at —-a<x<a. A
shallow water plane wave is incident from x =—oo

@(eikx + Re )e—iwt’ X <—a
Assuming =4 ¢
| .
198+ cosk(x+a+L)e', a<x<L
w
where R is the reflection coefficient under shallow water approximation then find R
Ans: Below the plate under shallow water approximation
¢:@(Ax+8)e“‘“, —a<x<a
w
Now, continuity of velocity and pressure at x = +a yield the boundary condition

¢lx :¢2x, ¢1 =¢2 atx==a

Thus, e™ +Re™ =—Aa+b, ik (e“ka — Re‘ka) - A

Further, Aa+B =T cosk(a+L)

Further, A=—kT cosk(a+L), Aa+B=Tcosk(a+L), —Aa+B=e" +Re*
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which yields B = %{e‘ika +Re*+T cosk(a+L)}.

The set of equations can be solved to find R.

Long wave scattering by a finite dock

A two-dimensional rigid dock of width 2a which is moored in water of uniform depth. The
sides of the dock at x = +a. A shallow water plane wave

n =ae' k = w/\[gh is incident from x =—w
Assuming
ig_a(eikx_l_Re—ikx)e—ia)t < —a
a) )
$= iga .
198 Foitecan X>a
[

whereR and T are the reflection and transmission coefficients. Find R and T.

Now below the plate, under shallow water approximation

¢:—@(ax+b)e“‘”‘, —a<x<a
w

Using the continuity of mass and pressure at x =+a, we obtain ¢, =¢,,, ¢ =¢, atx==*a

Th e—ikx + Reikx — —aX+ b
us, ) . _
ik (e—lka _ Relka) —a.
ikx _
Further, Te _ =ax+Db
ikTe" = a.
; —2ika —2ika . _ika
Therefore, R = |kae. CoT=2 4= |ke. C Boee
1-ika 1-ika 1-ika

Particle kinematics of a plane gravity wave

For a plane wave 7 = acos(kx — wt), find the components of particle speed and thus find the
speed of the particle in case of deep water.

Ans: In finite water depth, 7 = acos(kx — wt).

Thus, ¢ = 29 COSNK(NEY) Gy oty = 292 COSNKINEY) Gty
@  coshkh @ cosh kh
__ agw coshk(h+y) sin(kx— at) _aw cosh_ k(h+y) sin(kx— ot).
gk tanhkh  coshkh k sinh kh
4 = awk cosh k(h+y) cos(kx — at)= Hx cosh. k(h+y) cos(kx— ).
k sinh kh T sinh kh
4 = awk sinhk(h+y) sin(kx— @t)= Hz sinhk(h+y) sin(kx — ),

k sinh kh T sinh kh
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In case of deep water, kh >>1. Thus
&, :geky cos(kx — at), g, =¥eky sin(kx— at) = q = (¢} + ¢ =¥eky.

Thus, near the free surface at y =0, the particle speed is given by q=zH/T.Thus, each

component of velocity has three parts, namely (i) the surface deep water particle speed, (ii)
particle velocity variation over the vertical water column at a given location and (iii) passing
term dependent position in wave and time.

For the wave profile 7 = H cos kxsin ot

In a channel of depth h, determine the maximum water particle velocity and below the nodal
point under small amplitude shallow water approximation.
Ans: 7 =H coskxsin ot

_ gH cosk(h+z)coskxsin wt
$= 20 cosh kh

U =%= gHk cosk(h+z)
ox 2w coshkh

_ H 2x|cosk(h+2)
"2 T | sinhkh

For peak velocity under shallow water depth the nodal point, sinkxsinewt =1

sH 4 HA H H H [g
U = = =—C=— h:— —_.
v ST o T onT 2ne 2n V9 T 2

Long wave resonance in a bay

Under shallow water approximation, find the condition of resonance in a bay.

Ans: Under shallow water approximation, one dimensional wave equation is given by
o’'n 10

o ¢t

Near a bay head, standing waves are formed. Thus 7 = coskx cos wt

sin kxsin wt

sin kxsin wt :ﬁisin khsin wt.
T kh

7(0) 1 Near bay mouth nodes are formed and near bay head antinodes are formed.
() ~|coskl| Assuming bay mouth is at x =0 and bay head is at x =1, we have
During resonance % — o0 = coskl =0=cos(2n +1)% =kl =(2n +1)%
n
S 2 _onanEosie@ne i A
A 2 4 (2n+1)

A _ 4] 19
o g

Hence, when n=0, T = A is the fundamental period for bay oscillation.

Jon

Now, for long wave ¢ =2/T =\/gh =T =
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Long wave oscillation in a closed basin

Derive the relation for period of oscillation in case of long waves propagating in a closed
basin of length I.
Ans. Under the assumption of linearized longwave theory, the free surface elevation

satisfies
2 2
On the channel side walls 77, =0 atx=0, |
Assuming 7(x,t) =acoskxcoswt is a stationary wave solution of Eq. (A), the wall boundary
condition yield
sinkl=0=sinnz, n=12,...=kl=nx
nzi _ni 2l

=|l=—= = A=—,n=12,..
27 2 n

Therefore the phase velocity

___ o 2l
- rTrnr

Hence, T, = are the period of oscillation.
n@ P
A section of a closed basin has a depth of 20m and a horizontal length of 2000m. When

resonance occures in this section at the fundamental period, the height of the standing wave
is 0.5m. Determine the resonant period, the maximum water particle velocity under the
nodal point.
Ans: The fundamental period of oscillation also called the resonant period is given by
2l 2x200 4000
= 285.71sec.

"mJoh  J9.8x20 196

Further, maximumwater particle velocity

H /g 0.5 /9.8
=—, [ =" [|=—==0.25vV0.47 ~0.55m/s.
* 2\h 2 \20

Wave oscillation in a rectangular tank under shallow water wave approximation
Determine the period of free oscillation in a rectangular lake of uniform water depth, length

and width h, a, and b respectively under shallow water approximation.
Ans: The two-dimensional linearizedlong wave equation is given by
0° / o° n_ 1 o°n
, C=4/gh 1
aXZ ayZ atZ \/g— ( )
Assuming motion is simple harmonic in time with angular frequency o, 77 (X, y,t)is written

as 77(x, y,t) =n(x, y)e".Thus, Eq.(1) yields
2 2

a_n+a_ +k?p =0 @)

x> oy?
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wherek = @/c. Assuming that the walls are located at x =0,aalong length and y =0,b along
width, the wall boundary conditions yield

an _ at x=0,a 3)
OX
on
and—=0 at x=0, b. ()]
oy
The solution of (2) satisfying boundary conditions given in (3) and (4) is obtained as
mzx _ nr
n(x,y) = Z Z A cos—cosTy (5)
m=0 m=0

2 2
Now substituting for 7 from (5) in (2), yields k* = 72'2[: +%]

Thus the time period is given by

T_ —

TR G W

where m and n are referred as the modes of oscillation along the length and width of the
channel.

Wave oscillation in a circular lake under shallow water approximation
Under shallow water approximation, find the relation for the wave period during resonance in
a circular lake of radius a and depth h.

Ans: Consider a circular lake of radius a and depth h. The two dimensional wave equation is
given by

o° / o° n_1 o°n

, C=4gh A

aXZ ayZ atZ \/g— ( )

In cylindrical polar co-ordinate, Eq. (A), is rewritten as

o’'n 10 1 ¢?
Py, 100,15
or” ror r°o6
under the assumption 77 (r,8,t) = n(r,9)e™"*.
Assuming that the oscillating motion is periodic iné, n(r,8) is rewritten as
n(r,0) = f(r)e™.
Thus, Eq. (B) yield

o’f 1of s

+=—+| k*—=|f =0(C

o’ ror ( rzj ©

Writing K =kr, Eq.(C) can be rewritten as

+k’n=0, (B)
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o°f 1of s
- 4|1-=|f =0 D
ok?  k ok ( kzj (©)

Assuming that the wave amplitude is bounded nearr =0, Eq. (D) yield
cossd
n(r,9)=&35(kr){ }

sin s@
On the boundary wall of the cylinder

on =0 atr =a,which gives
or
J, (ka)=0 fors=0,121.--
In particular, for s=0
J, (ka) =0 = J, (ka) = 0, which yield

% =ka =1.2197,2.2330,3.2383

:@:O
A
We know that A =cT =T =1/c=1/,/gh (E)

Hence, from (D) and (E),
2a

T - 2a T 2a T
" 12197 /gh’ ° 2.233fgh’ ? 3.2383,/gh

Free surface flow inside a rotating circular cylinder
Determine the flow pattern inside a cylinder which rotates about its vertical axis with
constant angular velocity Q and the surface being open to the atmosphere. (Assumethat the
atmospheric pressure is constant and the flow is in the gravitational field).
Ans: Assume that the axis of the cylinder is along the z-axis. Thus, the components of
velocity are u=-yQ, v=xQ, w=0.Thus, 8_u+g =0
ox oy

which ensures the flow of an incompressible fluid. Hence, Euler equation yields
o ST I S o B

p OX poy poz
which on integration yield

xQ?

P %Qz (X*+y?)—gz+c, where cis an arbitrary constant.
P

Since p=p,, =constant,atz=0 at every point on the free surface. It is also zero at

(x,y)=1(0,0). Hence P C.
Y2,
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—z= i(x2 +y? ) is the surface of fluid.
29

Further, the streamlines are
dx d
u v w -y x 0
= x* + y? = constant, z = constant

gives the streamlines for the flow.Further, ?_%u =2Q vyields the vorticity vector which is
X

along the z-axis.

Circular Couette flow (Steady viscous flow between two concentric rotating cylinders)
100.Describe the steady viscous flow between two concentric cylinders which are rotating at

different angular velocity.

Consider the steady viscous flow between two concentric cylinders. Let R,and Q, be the

radius and angular velocity of the inner cylinder and R, and ), be the radius and angular

velocity of the outer cylinder.Thus, the equations of motion in the radial and tangential
dimensions are given by

u_ 1o A
r p or

d|1d(ruy)

—| = =0. B
Mdr[r dr ®)

Integrating (B) yield

ue:Ar+E
r

Using the boundary conditions
u,=QR, atr=R;
u, =Q,R, atr=R,

. . 2 _ 2 Q _Q R2R2
whmhgwesA:M, B:( L 2)21 2
R;-R;
1

R2-R?
W{[Qz _Ql(Rl/Rz)Z}H'Rle(Ql_QZ)}'

This flow is referred as the circular Couette flow.

Thus, u,is obtained asu, =

Note. For an incompressible fluid, the viscous stress at a point is given by
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ou. ﬁuj
oy =Ul —+—
OX;  OX;

which shows that o depends only in the deformation rate of the fluid element at a point and

) u ou; . .
not on the rotation rate %+a—’ On the other hand, the net viscous force per unit volume
X . X.

] i
. 00;;
at a point is given by F :a— =—-u(VxWw).
X.
J
Prove that the fluid elements in a solid body rotation do not deform. Thus, prove that surface
of constant pressure are paraboloids of revolution.
Ans: Consider the velocity vector associated with a solid body rotation

u,=wr/2 and u, =0.

The viscous stress o,, is given by

o = 15“r+rﬁ(“_ej ~0
=M  arlr

Thus, the fluid elements in a solid body rotation do not deform.
Since the viscous stress vanishes, Euler’s Equation of motion is applied for the flow problem.
Euler’s Equation of motion in cylindrical polar co-ordinate is given by

2
aur+ur8ur+u_gaur_u_g=_£8_p (A)
ot or r o8 r p or
6ug+ur ou, +u_€8ug+uru,, __ 1o (B)
ot o r 06 r pr oo
ou 10p

L+ (U-Vu, =———- C
p (u-V)u, s Jolt (©)
Substituting for u, =0, u, =%r, u,=0
Egs.(A), (B) and (C) yields

u op  op op

—4=—, —=0,—+pg=0

r or 00 0z P9

2 2
Now dp :@dr +a—pdz :pu—"dr—pgdz _pro dr — pgdz
or 0z r 4

:Idp:pTWIrdr—ngdz

=P, pl:ﬂ{[rz 4 j_pg(zz_zl)} (D)

8 2
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Thus, for p, = p,,
2
=7,-7 :g)—g(rz2 — rf)which is a paraboloid of revolution.

Therefore surface of constant pressure are paraboloid of revolution in case of fluid elements
in a solid-body rotation. It may be noted that the flow is steady in this case.
Note: Eq.(D) can be rewritten as

P, =B :g(usz —uﬁl)—pg(zz -17,)

=p, —§u§2+,ogz2 = pl—§u§l+pgzlwhich suggests that in case of solid body rotation

containing a viscous fluid in steady that p/p—u’ + gz is not a constant for points of different

streamlines.

Example of viscous fluid with irrotational motion

101.Show that the flow does not have any singularity in the entire field and is irrotational
everywhere. Viscous stresses are present and no net viscous force at any point in the steady
state. Here, the flow field is viscous but irrotational.
Ans: Consider the flow field is given by

QR’® . e . .
= , u =0, u, =0, r>R,which is the velocity distribution of an irrotational vortex.

uH
10u, ou
HereQQ ==—%:-—2¢5 =0
C =130 @ O
ou. ou
= r _ z =0
< 0z oOr

~10(ry,) 1léu, 10 rQR2 100 _,
ror raod rr r ) ro@
Therefore Q=(Q, Q, Q,)=0

This implies that the flow field is irrotational.
Next, by definition of viscous stress

2
il
r

L FPY r r?
Thus, shear stress exists. However, net viscous force per unit volume at a point is given by
F =—,L1(fo2)=0.
Hence, the net force per unit volume at a point is zero. This is the flow generated due the

presence of a rotating cylinder in an infinite volume of viscous fluid which rotates with
constant angular velocity /2. The above velocity field is also called the steady solution of
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the N-S equation satisfying the no-slip boundary condition u, = QR atr =R, with R being
the radius of the cylinder and Q is its angular velocity. This flow is not singular.

Steady viscous flow outside a circular cylinder rotating in an infinite body of fluid
102.Find the velocity distribution of a steady viscous flow outside a long circular cylinder of

radius R which is rotating with angular velocity Q in an infinitely body of fluid.

Ans: The result directly follows from the general solution discussed in the previous example

with Q, =0, R, =, Q =Q and R, =R. This gives u, =QR?/r,r >R, Here there is no

singularity in the flow and flow is irrotational in nature. This flow suggests that absence of

viscous dissipation.

Ans. See the previous exercise for details

103.Consider the flow generated by rotating a solid circular cylinder of radius r in an infinite
viscous fluid whose velocity field is given by u,=(wR?)/2r, r=R, u, =0, u,=0

where R is the radius of the cylinder and @/2 is its constant angular velocity.
Ans. See the two previous exercises.

Viscous flow within a steadily rotating cylindrical tank

104.Consider a steady rotation of a cylindrical tank containing a viscous fluid. The radius of the
cylinder is R and the angular velocity of rotation is . The flow would reach a steady state
after the initial transients have decayed.
Ans.Thus in this case 2, =0 at R, =0

Q,=Qand R, =R This gives from Ex. 1 u, = Qr which says that the tangential velocity is
proportional to r.

Viscous flow generated by rotating a circular cylinder (rotational flow)
105.Discuss the flow for the vector field given by u, =0, u, = w,r, u, =0.

Ans: Equation of continuity yields
li(rur)-Fl%-l-%:O.
ror r oo oz
Thus, an incompressible fluid flow is possible. Now, the component of vorticity vector about
z-axis is given by
1du,
:—— ru 20, # 0.
z r 8I’ ( ) e 0

Thus, the flow is rotatlonal in nature. Equations of streamlines are
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dr_rd_e_g0 dr_rdr _dz

u U, u 0 o,r O

r 4
= o,rdr =0 = r’=constant = r = constant = x* +y’ = constant, z = constant.

Thus, the streamlines are circles.Hence, the flow velocity is proportional to the radius of the
streamlines.Now the circulation around a circuit of radius r in this flow is given by

= C'ﬁq.ds = J.Ozn ru,do = 2nru, = 2nr’o,

Thus, the circulation is equal to vorticitytimes area. Thus, the flow can be generated by
rotating a cylindrical tank containing an incompressible fluid.

Irrotational vortex
106.Prove that in an irrotational vortex given by u, =T/2zr, the viscous stress is non-zero

everywhere, whilst the net viscous force on an element vanishes.(Here the flow is irrotational
everywhere except at origin)
Ans: The velocity field associated with an irrotational vortex is given by
T :L, u =0, u,=0,
2xr
whereT is the circulation around a contour of radius r. Thus viscous stress for the is given

by

1ou o (U, ur
o, =ul=—L+r—| L |\=L"=0
0 ﬂ{r 00 ar( r ]} zr?

Thus, the fluid elements undergo deformation.
The net viscous force per unit volume is given by

oo, 2
F=—=-u(Vxo) = ou__

OX; ' OX;OX;
This implies that deformation of fluid element is zero everywhere in case of an irrotational
vortex.

Further, from previous exercise, we have

op U r op op
P_LU Ry P, a0
o P T 2 B0 o P

0

2 2
Therefore dp = P dr+ P dz = p % dr - pgdz =£(L] dr — pgdz
or 0z r r\2zr

Integrating between any two elements yields

(11
P, — P ZT(E_Z_r_zZJ_pg(ZZ -1;)
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2 2
u u
P2 U | 9z, P Ua 0z, (A)
p 2 P
Thus between any two points in the flow field, in case of irrotational vortex, the sum of

pressure head and gravitational head is constant.
For p, = p,, Eq.(A) yield

2 2
7 _7 =Y _Up
2 1_2g zg

which are hyperboloid of revolution of second degree.
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