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Kinematics of fluid flows 

1. The velocity field associated with a fluid flow given by 2u 20y ,  v 20xy,  w 0.    Find the

acceleration, the angular velocity and the vorticity vector at the point (1,-1,2).
The acceleration vector is given by

Dq q q q q
a u v w

Dt t x y z

   
    

   

    

 2

2 3 2

ˆ ˆ ˆThus,  a 20y ( 20yj) 20xy(40yi 20xj)

ˆ ˆ              = 800xy i 400(y x y)j.

   

  



Thus at (1,-1, 2),  2ˆa is given by a 800im / s
 

The vorticityvector is given by  

 

x y z( ,  ,  )

w v u w v u
= ,  ,

y z z x x y

    = 0, 0, ( 20y 40y) =(0 ,0, 60y)

    

                           
  



Hence, at z(1, -1, 2), (0,  0,  60).   

Thus, the x and y component of vorticity vector vanish whilst the z-component of vorticity 

vector is given by z
ˆ ˆk 60krad / s.  


 Thus, the angular velocity at 

(1, 1,  2) is given by (0,  0,  30).  

Application of continuity equation   

2. Water flows at a uniform speed of 5m / s  into a nozzle whose diameter reduces from

10cm to 2cm . Find the flow velocity leaving the nozzle and the flow rate.

Ans: From continuity equation, we have  

1 1 2

2 2
2 2 2

1 2

Given q 5m / s,d 01m,d 0.02m

0.1 0.02
Thus,  A m ,  A (0.01) m .

2 2

  

           
   

Hence, from continuity equation 1 1 2 2A q A q  it is derived that  
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2 2
2

2

(0.01) q (0.05) 5

q 125m / s.

    
 

 

Further, flow rate near the nozzle is obtained as  
3

1 1Q A q  =0.0125 m / s.   
 
Example of continuity equation in Cartesian co-ordinate system 

3. Show whether the velocity field associated with  

2 2 2 2

ay ax
u ,  v ,  w 0.

x y x y
   

 
 Represent the flow of an incompressible fluid. 

Ans: For   incompressible fluid flow 
u v w w

0,  where 0
x x x x

   
   

   
 

Substituting for u, v and w,  we have 

   2 22 2 2 2 2 2 2 2

u v w ay ax 2axy 2axy
0.

x x x x x y y x y x y x y

       
                     

 

Hence, the given velocity field is a possible incompressible flow. 
 

4. The x-component of the velocity field of an incompressible flow is given by  

u Ay .  Determine ( , )v x y  if ( , ) 0.u x y   

Ans: The continuity equation, in case of two-dimensional flow is given by 

0
u v

x y

 
 

 
 

0   (as )

v=k(x)    (an arbitrary function of )

v(x,0)=0=k(x) v(x,y)=0


  



 

v
u Ay

y

x  

NB: It is clear that for non-zero v , u(x,y)  would have to vary with x or v(x,0) would have to 

be non-zero.  This is the case of a flow which is rotational as the z-component of vorticity 

vector is uy vx A 0   . 

 
5. Given the x- component of the velocity of an incompressible plane flow by  

2 2
5

ax
u

x y
 


. Determine ( , )v x y assuming ( ,0) 0v x  . 

Ans:
 
 

 
 

2 2 2 2 2

2 22 2 2 2

2a x y ax a y xu

x x y x y

  
 

  
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Therefore, for an incompressible fluid, 
u v

x y

 
 

   

Now
 

2 2

22 2

v x y

y x y

 


   
2 2

22 2

x y
v a dy c

x y


  


 2 2

y
a c

x y
 


 

Thus, ( ,0) 0v x  0c 
2 2

ay
v

x y
 


. 

 

Example of continuity equation in cylindrical polar co-ordinate system 
6. Show that the vector field   

r z2 2

1 1
q a 1 cos ,  q a 1 cos sin ,  q =0 

r r
             
   

represent a possible flow. 

Ans. From equation of continuity, r z

1 1
(q ) (q ) (q ) 0

r r r z

  
  

  
. 

r z

2 2

2 2

qq q1 1
Here,  

r r r z

a 1 a 1
        r 1 cos 1 cos

r r r r r

a 1 a 1
        1 cos 1 cos 0.

r r r r

 
 

  
                  

           
   

 

Hence, the vector field represents a possible flow. 
 

Axi-symmetric flow and continuity equation in spherical polar coordinate 

7. Show that the velocity field given by 
3 3

8 4
1 cos ,  1 sin ,  0
           
   

rq a q a q
r r    

represents the flow of an incompressible fluid. 
Ans: The continuity equation for any symmetric flow in spherical and polar coordinate is 
given by  

21 1
( ) ( sin ) 0.

sin

 
 

 rr q q
r r  

 
 

Substituting for ,   and ,rq q q   it is clear that the continuity equation is satisfied. 

 

 Axisymmetric irrotational flow in cylindrical co-ordinate system 

In cylindrical polar coordinate system, cos , sin , ,  x r y r z z  where r is the distance 

from origin and r is the radial distance from z -axis. The bodies of revolution coincide with 

z -axis and  0.u   Further, r zu ,  u .
r z

 
 
 
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Thus, in cylindrical co-ordinates system, the continuity equation reduces to  

( )1
0

 
 

 
r zru u

r r z
and in case of irrotational motion,   satisfies  

2 2 2
2

2 2 2

1 1
0

                   
r

r r r z r r r z

       (A) 

The vorticity vector is given by .
 

 
 

r zu u
w

z r  

Further, stream function and velocity potential for axisymmetric flow  are related by 

1 1
,    ,   0

 
   

 z ru u u
r r r z 

 
    (B) 

where  is the stream function.For irrotational flow 

0
 

  
 

r zu u
w

z r     (C) 

which using (B) yields 
2 2

2 2

1
0

  
  

  r r r z

  
 

which is different from Laplace equation satisfied by   in (A). 

 

Axi-symmetric flow (streamlines are conical surface) 
8. Assuming the spherical coordinate system, discuss the flow associated with the velocity 

vector is given by 
2

,   0.
4

 r

Q
u u

r 
 

Ans: Given velocity vector 
2

,   0
4r

Q
u u

r 
   

Thus, 
2 2

1

sin 4r

Q
u

r r r

 
  
 

  
 

                                (A) 

2

1 1
0

sin
u

r r r
 
 
  

  
 

                                  (B) 

From (A),  
2 2

1

sin 4

Q

r r


  





sin

4

Q 
 


 


cos

( )
4

Q
f r





    

Further,  
2

1
0

sinr r




 



cos

( ) ,    ( ) 0
4

Q
g f r





   ( )g    

Therefore, 
cos

4

Q 





 

Further,  
1

0
r








( )f r   

Again, 
24

Q

r r








( )

4

Q
g

r
 




    
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Therefore .
4

Q

r





  

Thus equipotential surfaces are spherical shells and streamlines are conical surfaces on which 

constant.   
 
Basic difference between a plane flow and an axi-symmetric flow. 

Lines of constant   and lines of constant   are not orthogonal for axi-symmetric flows for 

irrotational motion, whilst lines of constant   and lines of constant   are orthogonal for 

plane flows. Thus, in plane polar coordinate in case of irrotational motion, the stream 
function satisfy the Laplace equation whilst in axi-symmetric coordinate system, stream 
function does not satisfy the Laplace equation. Table shows the basic differences among 
various types of flows. 

 2-D Cartesian 
co-ordinate 
system 

Polar Coordinate system Axi-symmetric cylindrical polar 
Co-ordinate system 

Co-
ordinates 

(x,y) x r cos , y r sin    x r cos , y r sin , z z    

Velocity  (u,v) 
r

1
u , u

r r
 

  
 

 r z

1 1
u ,  u 0,  u ,

r z r r
 

   
 

 

Irrotation
al motion 

x y y xu v , u v  
 

r

1
u ,

r r
1

u
r r

 
 

 
 

  
 

 
r

z

1
u ,

r z r
1

u
r r z

 
  

 
 

 
 

 

Laplace 
equation   

2 2

2 2
0

x y

   
 

 
 

2

2 2

1 1
r 0

r r r r

          
 

2

2

1
r 0

r r r z

          
 

Vorticity 2 2

2 2x y

    
     



 

2

2 2

1 1
r

r r r r

             
  

2 2

2 2

1

r r r z

    
  
  

  

 
Irrotational flow, velocity potential and stream functions 

9. Show that the streamlines associated with the flow whose velocity potential is 
1A tan (x / y)  are circular. 

 Ans.Given 1A tan (x / y)   
Thus, the relation between velocity potential and stream function yields  

2 2

Ay

y x x y

 
  

  
 

which on integration gives 2 2A
ln(x y ) f (x)

2
     . 
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Further, 
2 2 2 2

Ax df Ax

y x x y dx x y

 
     

   
 

which yields
df

0.
dx

  

Thus,  f constant

            0, without loss of generality




 

Hence  2 2A
Therefore,  (x, y) ln(x y ).

2
     

Thus, the streamlines are given by (x, y) constant  which yields 2 2x y constant.   

Thus, the streamlines are concentric circles with centre at origin. 
 

10. The velocity potential for a two dimensional fluid flow is given by (x t)(y t).    Find the 

streamlines at time t for the flow. 

Ans: We have  2
x yu (y t) (y t) 2 f (x)           

Further, '
y xv f (x)      

 
y x

2

Thus, (x t) (x t),

which yields (x t) g(y).

      

    
 

2 2

2 2

(y t) (x t)
Therefore,  f (x) g(y)

2 2

                   (x t) (y t) constant

 
   

    
 

Thus 2 2(x t) (y t) constant     yield the streamlines. 

11. The velocity potential for a flow is given by ( , , ) ( 3 5 ) cos  where   x y t x y t   is a 

constant. Determine the stream function for the flow. 

Ans: Given ( 3 5 )cosx y t     

Thus,      3cos

          3 cos ( )

  

   
y x t

y t f x

  

 
 

'Further, = 5cos ( )

        ( ) 5 cos  (K is arbitary and is chosen as zero)


  


  

x t f x
y

f x x t K

 


 

Thus, the stream function is given by (5 3 ) cos . x y t   

12. The stream function for a two-dimensional incompressible flow is 
2 2

,
2 2

  
ax cy

bxy

where a, b and c are known constants. Find the condition for the flow to be irrigational and 
thus find the velocity potential for the flow. 
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Ans:  Given the stream function
2 2

,
2 2

  
ax cy

bxy  

Now, 
2 2

2 2
,   .

 
  

 
a c

x y

 
 

Therefore, for the flow to be irrigational,  
2 0 0

             .

    
 

a c

a c


 

Thus, for irrotational motion, a c . Assuming the flow as irrotational, there exists a velocity 

potential (x, y) such that 
2

( ).
2

      x y

bx
bx cy cxy f y  

 
Further, 

2

'( ) ( ) ( ).
2

            y x

by
cx f y ax by axy g x  

 Thus, 
2 2

( ) ,  ( )
2 2

 
bx by

g x f y .  

Hence, 2 2( , ) ( )
2

b
x y x y axy     is the required velocity potential. 

 

13. Suppose the stream function are given by ( , )x y xy  which represent flow around a 

rectangular corner. Find the velocity potentials for the flow if exist. 

Ans: Given ( , )x y xy   

Therefore 2 0   

Thus, the flow is irrotational. 

Thus, there exists a velocity potential   which will satisfy  

x yu x     

2 / 2 ( )x f y              (A) 

y xv y       

2 / 2 ( )y g x             (B) 

From (A) and (B), 
2 2( ) / 2,     ( ) / 2f y y g x x    

Thus 2 21
( )

2
x y  
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14. The velocity components associated with the two dimensional flow of an inviscid fluid are

2 2 2 2
,  

kx ky
u v

x y x y
 

 
. Is the flow irrotational? Find the streamline passing through the 

points (1,0) and (3,0). 

 Ans: The fluid is irrotational, if  
u v

y x

 


 
.  

 Now    
2 2 2

2
= .

( )

  


  
u kxy v

y x y x
                                       (A) 

 Thus, the flow is irrotational. 

 Next, assume that   is the stream function, thus 

 
2 2

kx
u

y x y

 
 
 

 

 

1tan ( )
y

k f x
x

       
 

                                                                                (B) 

 where ( )f x  is an arbitrary function. 

 Further, from (A) and (B), 

 '
2 2 2 2

( )
ky ky

v f x
x x y x y


   

  
 

 
' ( ) 0f x  ( )f x c   (A constant)                                                                  (C)              

 Hence, (B) and (C) yields        

 

1tan
y

k c
x

      
 

 

 For stream lines,  constant   

 

1tan
y

K
x

   (A constant) tan ,y x K kx      (K being a constant)            (D) 

 Eq.(D) is the required streamline. Since the streamline passes through (1, 0), Eq.(D)  yield

0.k Thus, 0y    is the streamline passing through (1, 0). Further, since the streamline 

passes through (3, 2), Eq.(D)  yields  2 3y x as the other streamline. 

 

15. The stream function associated with a flow field is given by ( , )x y xy  . Prove that the 

motion is irrotational. Find the components of velocity and hence find the velocity potentials. 

Ans:  Given  ( , )x y xy 
2 2

2 2
0

x y

  
  

 
 

Thus, the flow is irrotational. Let u and v bethe x and y components of velocity. Thus 

yu x  and .   xv y  
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Thus xu x  2 2 ( )  x g y  (A) 

  yv y 2 2 ( ).   y f x                 (B) 

From (A) and (B), the velocity potential   is obtained as 2 2( , ) ( ) 2. x y x y
 

 

16. Describe necessary condition for the 2 2 2ax by cz     to be the velocity potential of 

anirrotational motion of a fluid flow. 

Ans: Let  to be the velocity potential, of an irrotational motion of a fluid, then 
2 0                                                          (A) 

Given  2 2 2ax by cz                              (B) 

Equation (A) and (B) yields, 0a b c   which is the necessary condition. 

 

Relation between velocity potential and stream function in polar co-ordinate 
17. Find the stream function associated with the two-dimensional incompressible flow with 

velocity components given by
2 2

2 2
1 cos ,  1 sinr

a a
v u v u

r r 
   

       
   

. Hence, obtain the 

stream lines.
 Ans: Let  be the stream function associated with the flow. 

 Since, 
1

ru
r







 rru




 


 

2

sin ( )
 

     
 

 r

a
ru d u r f r

r
    

Further, 
2

'
2

1 sin ( )
a

u f r
r r

 
 

     
 

Now 
2

'
2

1 sin ( )
a

v u f r
r r
 

 
        

2

2
1 sin

a
u

r


 
   

 
 

' ( ) 0,  ( ) constant 0 (w.l.g.)f r f r      

2

sin
a

u r
r

 
 

   
 

 

Thus, 
2

sin constant
a

u r
r


 

  
 

gives the streamline for the flow. 

Application of Bernoulli’s equation in steady state and vortex motion 
18. Assuming that the pressure far from a tornado in the atmosphere is zero gauge. If the velocity 

at r 20m. in 20m / s   find the velocity and pressure at r 2m (Hint: Assume that the tornado 

is modeled as anirrotational vortex with density of air 31.2kg / m  ). 
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Ans.In case of the tornado, it is assumed that the flow is circular in nature with r zv 0, v 0. 

Further, it is given that r 20m, v 20m/s.   

2

Thus,     v 2 r

         2 rv =2 20 20= 800 m / s





  

       
 

Hence, the velocity at r 2m is given by 

800
v 200m / s.

2 r 2 2

  
  

 
 

Assuming thatthe motion is irrotational, the pressure is given by  
2

a

v
p 24000p .

2
    

The negative sign in pressure refers to vacuum. This negative pressure which creates a 
vacuum causes the roots of building to blow off during a tornado. 
 

Two dimensional irrotationalflow and streamlines 
19. Discuss whether the flow is irrotational. 

2 2 2 2
, ,0

ay ax
q

x y x y

  
    


 

Ans.  It is easily verified that 

2 2 2 2
0

ay ax

y x y x x y

      
          

except at origin. Thus flow is irrotational except at 

( , ) (0,0).x y   
 
20.The velocity field associated with an irrotational incompressible fluid flow in 2-D given by

u 2x,  v ty   where x and y are in meters and t is in seconds. Find the equation of stream 

line passing through (2,-1) at t 4s . 

Ans: Let    be the velocity potential and   be the stream function associated with the flow               

field. Thus, the equation of streamlines are given by  

dx dy dx dy
    

u v x 2y
  


 

Integrating both sides, it is derived that  

2

2

1
ln x ln y constant

2

ln x y constant

x y c (a constant).

 

 

   
Since, the streamline passes through (2, -1), it is derived that c 4.   

Hence, the streamline passing through (2,-1) has the equation 2x y 4.   
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21. Determine the condition for which the velocity vector ,   u ax by v cx dy     will represent 

 the flow of an incompressible fluid. Show that the streamlines of this motion are conic 
sections  in general and rectangular hyperbolas when the motion is irrotational. 

  Ans: Given    ,   u ax by v cx dy     

u
a

x


 


and

v
d

y





 

For possible fluid motion, 0
u v

x y

 
 

 
, which yield 0a d   

Now for the flow to be irrotational, .
 

 
 
u v

y x
 

Therefore, the velocity field will represent an irrotational motion of a fluid for a d  and 

.b c Next, to find the stream function , we have  

u ax by
y


  


2

( )
2

   
by

axy f x  

Further  v cx dy
x


  



2

( )
2

 
     

 

cx
dxy g y  

Comparing the two expressions for the stream function , it is derived that  
2 2

2 2

by bx
axy    which represents a rectangular hyperbola. 

 

22. Show that the velocity field given by 2u cxy ,  2 2 2( )v c a x y    represent the velocity  

vector of an incompressible fluid flow. Hence, determine the stream functions and discuss    

Ans:  Given   2u cxy ,  2 2 2( )v c a x y    

 Thus, 2
u

cy
x





, 2

v
cy

y


 


 

 Now,  0
u v

x y

 
 

 
 

 which ensures u and v  are the velocity vector of an incompressible fluid flow. 

Now 2u cxy
y


 


2 ( )cxy f x    

Further, 2 2 2( )v c a x y
x


    


 

3
2 2( ) ( )

3

x
c a x y x f y      



12 
 

Hence 
3

2( )
3

cx
f x a cx     and ( ) 0g y   

Therefore,
2

2 2( )
3

x
cx a y      

Thus, 2 23
  ( )

3

x
x a y    constant yield the streamlines for the flow. 

 

Two dimensional flow, stream function and vorticity vector 
23. Find the relation between stream function and vorticity vector. 

 Ans. The vorticity vector 


 in a two-dimensional flow has the component 

ˆv u
k

x y

  
     

 2 2

2 2
k̂

x y

   
     

2 ˆ( )k    

NOTE: When the flow is irrotational, then only grad q 


, so that xu   and yv  leading 

to 2 20 and 0.       

 

24. Show that the vorticity vector for any fluid flow satisfies satisfies 0 


 

Ans: , ,(   )x y z    


,  ,  
v w u w u v

z y z x y x

      
          

 

Therefore 0
v w w u u v

x z y y x z y y x

                                    


 

 
Streamlines and flow with constant vorticity 

25. Find the streamlines for the flow with constant vorticity. 
Ans: The vortcity vector in the two-dimensional flow is given by 

ˆu v
k

y x

  
     

k̂
y y x x

                  
 2 k̂   

Further, for ,   ,z x iy z x iy     

( , )x y can be represented  as ( , ).z z  

Thus, 
z z

x z x z x z z

          
     

      
 

and
z z

i
y z y z y z z

                        
 

Thus, 2 ,   2i i
z x y z x y

     
   

     
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Hence, 
2 2

2 2
i i

x x x y x y

  
       

            

2

4
z z




 
 

Thus, flow with constant vorticity yields 

constant   

2
2

4
z z




 
 

1
( ) ( )

4
f z f z zz      

where f  is an arbitrary function of z . 

Hence   can be rewritten as  

2 ( )
4

zz if z 
   

Thus, the flow with constant vorticity  consists of flow whose stream function is 
4

zz


 

along with an irrotational motion whose complex potential is 2 ( ).if z  
 
26. The velocity component of a two-dimensional inviscid incompressible flow are given by 

 
   1/2 1/22 2 2 2

2 ,  v 2 .    
 

y x
u y x

x y x y
Find the stream function and vorticity vector. 

Ans:  Let   be the stream function. 

 1/22 2
Then, 2 ,    


y

y
u y

x y


 

 
2 2 2 2 1/2

1/22 2
which on integration yield ( ) ( ) ( ).      




y
y f x y x y f x

x y
  

 1/22 2
Further, v 2 ,    


x

x
x

x y
  1/ 22 2 2 ( ).x x y g y      

From the above two expressions for (x, y) , we have , 2 2( ) ,  ( )f x x g y y   

Hence  1/22 2 2 2 .   x y x y  

Thus,  1/ 22 2 2 2  (a constant) gives the streamlines.x y x y K     

Next, the vorticity vector is given by  

 1/22 2

1ˆ ˆ ˆ = 4 .
                  


z

u v
k k k

y x x y
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27. Find the vorticity associated with the velocity field ( , , 0) 

q ay ax  and thus show that the 

vorticity vector associated with the flow constant. 

 Ans: Equations of streamlines are
0

 

dx dy dz

ay ax
 

2 2 constantx y   are the streamlines. 

Further, curl(q) 
  ˆv u

k
x y

  
    

ˆ2ak  

Thus, the vorticity vector for the flow remains the same everywhere. Here, the flow is 
rotational. 

 
Streamlines are same does not imply motions are same (rotational / irrotational) 

28. Consider the flow field with velocity components being given by ,   and 0.   u wy v wx w  
Find the stream function and thus the streamlines. Draw the basic difference between this 

flow and the flow whose velocity potential is given by 2 2ln ,   .m r r x y     

Ans: For the first flow, 
,  ,  0u wy v wx w    

Here, 0
u v

x y

 
 

 
 

Thus an incompressible fluid flow is possible.  

However, 2 0
u v

w
y x

 
  

 
 

Hence, the flow is not irrotational. Thus, velocity potential does not exist for the flow. Here, 
Eqn. of the streamlines are given by  

       

or    
0

dx dy dz

u v w
dx dy dz

wy wx

 

 


 

Ist two equation gives 2 2 constant, constant.  x y z  
The particles are following a circular path with centre at origin. On the other hand, for the 
second flow 
    ln ln ,  

,   ln

     
  

iW i ik z ik r k z re

k k r

  
  

 

2 2Now, constant constant   x y which are the streamlines. 

 

2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

( ) 2
Here, ,

( )

( ) 2
         ,

( )

   
  

   

   
  

   

x x y x

x x y x x y

y x y y

y x y y x y

 

 
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Therefore, 
2 2

2 2
0.

 
 

 x y

 
 

Hence, the flow is irrotational. Thus, in the second case, the flow is irrotational and particles 
follow a circular path whilst in the first case, the fluid motion is rotational. 
 
Irrotational vortex or potential vortex - irrotational flow except at origin - Example of a 
flow for which streamlines are circular and flow need not have vorticity everywhere 

29. Discuss the flow characteristics for the velocity vector given by r z

c
u ,  u 0,  u 0.

r     

Ans. Here, the vorticity at any point in the flow is given by  

r
z

u1 1 1 c c
w (ru ) = (r ) 0 .

r r r r r r r

 
   

  
 

Thus, the flow is irrotational everywhere except at the origin.  
Now,  around a contour of radius r, the circulation is  

2

0
ru d 2 c



      

which shows circulation is a constant and independent of the radius. 
Further, using Stokes theorem 

A

.dA    

For a contour enclosing the origin, since 2 c 0     

A

.dA 0 


0 


somewhere within the area enclosed by the contour.  

Since   is independent of r , the contour can be shrink without altering  . Thus the area can 

be shrinking so that 


 must be infinite in order to make  .dA


 to be finite and non-zero. 

Thus, the flow represented by u c r   is irrotational everywhere except at the origin where 

the vorticity is infinite.  Such a flow is called an irrotational vortex or potential vortex.  It 
may be noted that around a closed curve not containing the origin, the circulation is zero.   
Further, the equations of streamlines are given by  

2

z

dr rd dz dr r d dz
,or 

r u u 0 c 0

 dr 0,or r constant


 
   

  

 

Therefore the streamlines are circles.  This example illustrates that circular streamlines do not 
imply that flow should have vorticity everywhere.   
Rankine vortex:In case of a Rankine vortex, the vortex is assumed to be uniform within a 
core of radius R and zero outside the core. For example; vortices like bathtub vortex or an 
atmospheric cyclone have a core that rotates almost like a sold body which is approximately 
irrotational at far field.  Here, a rotational core exists as the tangential vector in an irrotational 
vortex has an infinite velocity jump at origin.  
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Example of flow for which stream function exists but velocity potential does not exist. 
30. Give an example of a flow for which the stream function exist but velocity potential does not 

exist.  
 Ans. Consider the flow field represented by the velocity vector 

( , , 0)q y x 


 
Here, ˆcurl 2 0q k 


 

Thus the flow is rotational in nature and thus the flow is not of potential type. 

Hence,   will not exist. On the other hand, the equation of streamlines are given by  

0
 


dx dy dz

y x 
 

which yields that the streamlines are given by  
2 2 constant, z constant.  x y  

 Thus 2 2x y   is the required stream function 

 
Flow field and vortex lines 

31. The velocity vector in the flow field is given by ˆ( ) ( ) ( )q i Az By j Bx Cz k Cy Ax     


with A, B and C being non-zero constants. Determine the equation of the vortex lines. 

Ans: The velocity vector is given by ˆ( ) ( ) ( ).q i Az By j Bx Cz k Cy Ax     


 

Thus, the vorticity vector is given by 

curlq q   
  

ˆˆ ˆi j k

x y z

Az By Bx Cz Cy Ax

  


  
  

ˆˆ ˆ2  2  2  .C i A j B k    

Therefore, 2 ,  ,  x y zC A B       

Thus, equations of vortex lines are
x y z

dx dx dx
 

  
                                                    (A) 

Substituting for ,   and x y z   , Eq.(A) yield 

,  
C A

x z k y z k
B B

    as the two infinite systems of vortex lines. 

 
32. The velocity vector for an in compressible flow is given by  

ˆˆ ˆ( ) ( ) ( )q Az By i Bx Cz j Cy Ax k     


, where A, B and C are non-zero constants. Find 

theequation of vortex lines. 
Ans: The velocity vector for an incompressible flow field is given by 

ˆˆ ˆ( ) ( ) ( )q Az By i Bx Cz j Cy Ax k     


u Az By   , v Bx Cz  , w C y Ax   
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Hence, the components of vorticity vectors are 

2x

w v
C

y z

 
   

 
, 2y

u w
A

z x

 
   

 
, 2z

v u
B

z y

 
   

 
 

Therefore, the equation of vortex lines are  given by 

y y z

dx dy dz
 

  
 

which yield 

2 2 2

dx dy dz

C A B
                                                                      (A) 

Now 
2 2

dx dy

C A
 1Ax Cy c                                              (B) 

Further 
2 2

dy dz

A B
 2By Az c                                          (C) 

Thus, the vortex lines are the intersections of the straight lines given by Eq. (B) and Eq. (C). 
 

Application of Bernoulli’s equation in steady state 

33 Assuming that the wind speed in a storm is given by30m / s , determine the force acting on 

the 2m 3m door facing the storm. The door is in a highrise building and the wind speed is 

not reduced due to ground effects. Use density of air 31.2kg / m   and the fluid is inviscid 

and incompressible. 
Ans:  Assuming the flow is steady and fluid is incompressible, Bernoulli’sequation yields 

2 2 2 2
1 1 2 2

1 2

q p q p
h h

2g g 2g g
    
 

 

It is assumed that 2q 0 (i.e., wind speed near the dooris 2q 0 ). 

Further, it is assumed that 1 2h h  and 2q 0 and  the atmospheric pressure 1 0p   which is 

constant otherwise. Thus,  
2 2

2 22 2 2
2

p q q
p =12 45N/m =540N/m .

g 2g 2


   


 

Now, total force on the door p A 540 2 3 3240N.       

 

Stream function and the complex potential  

34. Find the complex velocity potential where the stream function   is defined by 
2 2 2 2( , ) 2 ( 3 ) ( ) 2 .    x y x x y x y xy   

Ans: Given 2 2 2 21
( , ) 2 ( 3 ) ( )

2
x y x x y x y xy       

Thus, 12x yu xy y x         
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2 26 ( )x y xy x f y                                                  (A) 

Further, 2 26 6y xv x y x y          

2 3 26 3 ( )x y y xy y g x                                          (B) 

From (A) and (B) 3 2( ) 2f y y y   and 2( )g x x  

which yield 2 2 2 2( , ) ( ) 2 (3 )x y x y y x y xy       

Therefore, 

2 2 2 2 2 2 2 21
( ) ( ) 2 (3 ) {2 ( 3 ) ( ) }

2
W z i x y y x y xy i x x y x y xy                

2 2 2 2 2 2( / 2)( ) (1 ) 2 (3 ) 2 ( 3 )i x y i xy y x y ix x y           
3 3( / 2) (1 ) 2( ) 6 ( )i zz i xy y x xy x iy          

This gives the required complex potential. 
 

Complex potential (Doublets or flow around circles touching the x-axis) 

35. Show that the complex potential 2( ) w z ua z is associated with flow whose streamlines are 

circles which touch the x -axis at origin. This is also referred as doublet. 

Ans: Given the complex potential 
2 2

( )
iua ua e

W z
z r



 
2 2

2 2

sinua ua y

r x y

    


 

The streamlines   constant are circles which touch the x-axis at the origin. The motion is 

due to a doublet at origin. 

 
Complex potential (streamlines are coaxial circles with center on y-axis and 
equipotentials are circles with center on x-axis which are orthogonal co-axial circles) 

36a.Describe the flow for the complex potential given by 1( ) tan
k z

W z
c

  

Ans: Now 1( ) tan
k z

W z
c

 1tan
k x iy

i
c

 


 
    

which gives tan ( )
x iy

i
c k

  
   

Eliminating  and  , it  is  derived that 
2

2 2 22 2
coth cosechx y c c

k k

     
 

and
2

2 2 22 2
coth cosech .    

 
x c y c

k k

 
 

Thus, the curves   constant and   constant gives orthogonal co-axial circles, where the 

circles with center on y -axis are streamlines and circles with center on x -axis yield the 

equipotential surface. 
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 Complex potential (Flow in a circular cylinder in the presence of source and sink) 

36b.A source and a sink of strength m are placed at  a 2,0  with a fixed circular boundary

2 2 2x y a  . Find the streamlines for the flow. 

Ans: From circle theorem we know if f (z)  is the complex velocity potential for the flow 

having no rigid boundaries and such that there is no flow singularities outside the circle

z a . Then an introducing a rigid circular cylindrical surface of section z a  into the 

flow, the new complex velocity potential for the flow within the boundary becomes  
2w(z) f (z) f (a / z) for z a   . 

The complex potential for a source and a sink of strength  m located at a 2 ,0  with no 

circular boundary is f (z) m ln(z a / 2) m ln(z a / 2).     When a circular cylinder of radius 

z a  is introduced into the flow with the boundary, the new complex potential becomes 

   

2 2a a a a
w(z) mln(z a / 2) mln(z a / 2) mln mln

z 2 z 2

1 1
       m ln x a iy ln x a iy ln 2a x iy ln 2a x iy .

2 2

   
           

   
                   

    

 

 

1 1 1 1

2 2
1 1 1

2 2
2 2 2 2 2 2 2 2

y y y y
Hence,  m tan tan tan tan

1 1 2a x 2a xx a x a
2 2

4ay ay 5ay(r a )
               m tan tan m tan

1 14a r r a (4a r )(r a ) 4a y
2 2

   

  

    
                             
     
  
   

        
 

.





 
 

 

 Now, constant yield  2 2 2 2 2 2 2 21
(4a r )(r a ) 4a y Ky(r a )

2
     , 

 which are the streamline equations with K being an arbitrary constant.
  

Complex potential (flow around a rectangular corner) 

37. Discuss the flow pattern for the complex potential 2( ) w z z . 

Ans: Given 2( ) w z z 2 2 2i x y ixy       

2xy   

which yield constantxy   as the streamlines. 

Thus, streamlines are rectangular hyperbolas representing flow around a rectangular corner. 
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Complex potential and two dimensional flow (flow past a wedge) 
38. Find the stream function and speed q for the complex velocity potential 

1( ) ,  .    in nw z ce z n     Find c if q U for r 1  . 

 Ans: Given  1( ) ,      in nw z ce z n     

 

1

( )1 1 ( 1) 1

Thus, ( )

                 = ( ) = = .

 

     

   

  

in n

i nin i n in n i n n

w z i ce z

ce re ce r e cr e



    

 
 

   1 1Therefore,  cos ( ) ,  sin ( ) .        n ncr n cr n         

Hence 0 ,  2         

Thus, the streamlines are the flow past a wedge of angle 2 whose section is placed 

symmetrically with z-axis. Further, the speed q is given by  

2 2 2 2. ( 1) ndw dw
q c n r

dz dz
    

Thus, for 1,      thenr q u   

( 1) nu c n q ur     

Thus, the speed at a distance r from vortex is nur . 

 

Complex potential (stagnation point flow) 

39. Determine the flow near a stagnation point in the xy plane. 

Ans: Let   be the stream function and origin be a stagnation point. 

Hence, at the origin 

0,  0
x y

  
 

 
 

Let 0   be at the origin. 

Thus, in the xy  plane, when  ,x y  are small,   can be expanded as 
2 22ax hxy by cx dy e          

since  is assumed to be zero at origin, 0e   

Further, 0,  0x y    at origin yield 0d c   

Therefore,  2 22ax hxy by     

Thus, for ,x y , small,   is approximated as   
2 22ax hxy by    , 

which represents two straight lines. 
Further, when the flow is irrotational, 

2 0   

which yields 0.a b   
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40. Find the stagnation point for the flow field given by 2( ) 2 3W z z iz  . 

Ans: Given 2( ) 2 3W z z iz   

For stagnation point, 0
dW

dz
 . 2 6 0iz   .

3
 

i
z  

Therefore, the point (0,1/3) is the stagnation  point. 

 

41. For the complex potential   /
( ) w z ua z a

 
, find the stagnation points. 

Ans: For stagnation point 0
dw

dz
. 

Thus, for   /
( ) w z ua z a

 
, the stagnation points are for 

1
0z




  

Therefore, if   , the stagnation point is at infinity. On the other hand, if   , the 

stagnation point is at z 0.  
 

 Superposition of a uniform flow and a source (half body) 
42. Discuss the flow generated due to the superposition of a source of strength m and an 

uniformstream of speed u. 

Ans: Here ( ) lnW z uz m z   

( ) (ln )i u x iy m r i        

sin ,ur m     where cos , sinx r y r    

Hence, 0
dW

dz


m
z

u
    

Therefore, the stagnation point occurs at 
m

z
u

  . 

Thus, the value of the stream function passing through the stagnation point is  

1tan
m

z
u

y
uy m

x
 



 
( , ) ,

sin m
r

u

ur m
 

     
 

   sin
m

u m
u

   m  

Thus, the equation of the streamline passing through the point  
m

z
u

   is 

sin     ur m m         (A) 

Eq.(A) represents a semi-infinite body with a smooth nose and is known as a half body. 
 

 Potential flow against a fixed plane wall 

43.Show that the velocity potential   2 2 2( 2 ) 2  a x y z represents the flow against a fixed  

 plane wall. 
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Ans:  Given 2 2 2( 2 ).
2

  
a

x y z  

Thus,  ,  ,  2 .
  

      
  

u ax v ay w az
x y z

  
 

Now,
2 2 2

2 2 2
2 0a a a

x y z

    
     

  
. 

Thus the flow is irrotational.The equation of the streamlines associated with the flow satisfy

.
dx dy dz

u v w
    

 The equation  yield
dy dz

v w
  

 2  (a constant).
2

  

dz dy

y z k
z y

 

      Further, the equation  yield
dx dy

u v
  

  ,  with  being a constant.
dx dy

x cy c
ax ay

    

 The intersection of the two curves gives the streamlines. These streamlines are often called a 
cubic hyperbola and is the flow against a fixed plane wall. 

  

 Complex source potential and velocity potential for a flow 
44. Show that the point source of strength on flow which is symmetrical in the radial direction is  

 given by  ln
2

m
W z


  has the velocity potential   which satisfies  

2 ( )m x   ,      ( , )x x y


 

Ans: Given   ln ln
2 2

im m
W z re 

 
 

 

ln
2 2

m im
i r  

 
     

Therefore, ln ,
2


m

r


.
2


m


Thus, the stream lines are given by

1k(a constant) tan (y / x) k y cx.      Further, since
2

0

nds rd m
r

 
   

  , the 

source strength is the rate of production of fluid per unit span. 

Further,   satisfies 2 0   except at origin. 

However, 2 2

0
ln lim ln( )

2 4

m m
r r

 
    
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Thus, 2 2 ln
2

m
r


     
 

2 2 2

0
lim {ln( )}

4

m
r


  

 

2 2
20

1
lim ln( )

4

m
r

r r r

       

2

2 2 20
lim ( )

( )
x

r





 


 

( ) ( ) ( ) ( ) ( )x y x y x
     


   , where ( , )x x y and 2 2
0 0( ) ( )r x x y y    . 

45. Show that the velocity potential ( , ) ln | |
2

m
x y x y


   produced due to a source of strength 

m satisfies 2 ( ).  m x y  The velocity potential   is often known as the free space 

Green’s function. 
Ans: Proof follows from previous exercise.  

 
Complex potential (flow in the presence of source and sink) 

46. Consider a source and a sink each of strength m  are located at distance c in either side of the 

origin. 

Ans: Assuming that the source of strength m  is located  (c,0)  and sink of strength m is 

located at ( c,0) , the complex potential given by w(z) m ln(z c) m ln(z c)     which 

yields i m ln(x c iy) m ln(x c iy).           Therefore, the stream function   is 

obtained as 

1 1 1 1
2 2 2 2

2 2

y y
y y 2cyx c x cm tan m tan m tan m tan .

yx c x c x c y
1

x c

   

 
       

      

 

Thus, the streamlines are given by
2 2 2

2cy
tan

x y c m




 
 which is rewritten as  

2 2 2x y 2cy cot c 0,  where  is assume to be constant.
m


      

The above streamline represents acircle with radius  2c cot m 1  and centre c cot m

lying on the y-axis. Each value of   will give a streamline. 

Sources and sinks within a cylinder in a flow 
47. Discuss the flow within a circular cylinder of radius a in the presence of a source and sink of 

strength m located at  2,  0a and  2,  0 a . 

Ans: For a source of strength m at  2,  0a  and sink of strength m located at  2,  0 a , the 

complex potential with no circular boundary is  

( ) ln ln
2 2

a a
f z m z m z         

   
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Hence,  
2 22

ln ln
2 2

a a a a a
f m m

z z z

            
     

 

Thus, when a cylinder 2 2 2x y a   is inserted into the fluid, the complex potential at points 
of its interior is  

   

2 2

( ) ln ln ln ln
2 2 2 2

        = ln ln ln 2 ln 2
2 2

a a a a a a
W z m z z

z z

a a
m x iy x iy a x iy a x iy

                      
        

                   
    

 

which gives  

1 1 1 1tan tan tan tan
/ 2 / 2 2 2

y y y y
m

x a x a a x a x
                                   

 

1 1
2 2

2 2 2 2

1 1
2 2 2 2/ 4

/ 2 / 2 2 2tan tan
1 1

/ 4 4

4
    = tan tan

4

 

 

    
                

              
              

y y y y
x a x a a x a xm

y y
x a a x

ay ay
m

a r r a



 

or
2 2

1
2 2 2 2 2 2

5 ( )
tan

(4 )( / 4) 4

ay a r
m

a r r a a y
   

     
 

Thus, the streamlines are given by constants  which yields
2 2 2 2 2 2 2 2(4 )( / 4) 4 ( )a r r a a y Ky a r     as the required streamlines with K being a 

constant. 
 
Superposition of sources and sinks 

48.If there are source located at ( ,0)a ,  ( , 0)a  and sink at (0, )a  and (0, )a   all of equal  

strength in flow, then show that the circles through these points is a streamline. 

Ans: Let ( )W z be the complex potential associated with the flow having sourcesat ( ,0)a ,  

( , 0)a and sinks at (0, )a and ( (0, )a  each of strength m. Thus  ( )W z  is given by  

( ) ln( ) ln( ) ln( ) ln( )       w z m z a m z a m z ia m z ia

 

2 2 2 2ln( ) ln( )m z a m z a      

 

 2 2 2 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

ln( ) ln( )

ln

( cos 2 ) sin 2
ln

( cos 2 ) sin 2

i i

i

i

m r e a r e a

r e a
m

r e a

r a ir
m

r a ir

 





 
 

   





 


 
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2 2
1 1

2 2 2 2

2
1

4 2 4 4 2

cos 2 sin 2
tan tan

cos 2 cos 2

2 sin 2
       tan

cos 2 sin 2

r r
m

r a r a

ar
m

r a r

 
 


 

 



 
     

 
    

1 1 1tan tan tan
1

x y
x y

xy
   

   
 

 2 2 2 2 2 2ln( ) ln( )i im r e a r e a                                    (A) 

Thus, the stream lines are given by  

2 2

4 4

2 sin 2a r
k

r a





   (A constant) 

4 4

2 2

1

2 sin 2

r a
c

a r k


   (Say) 

In particular, for    0c  ,
4 4r a 2 2r a  ,which are circles with centre at origin and of 

radius a . Thus, the circle passes through the said points. 

Alternately 
2 2 2 2( ) ln( ) ln( )   w z m z a m z a  

2 2 2 2 2 2ln( 2 ) ln( 2 )m x y ixy a m x y ixy a            

    

2 2 2 2 2 2
1 1 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2
1 1

4 2 2 2 2 2 22 2 4

2 2
2 2

Thus,  tan tan tan
2 2

1

4 4
             tan  = tan .

xy xy
xy xy x y a x y a

xy xyx y a x y a
x y a x y a

a xy a xy

x y a x y ax y a

   

 

        
           

 
    

 

 Hence,   = constant      

  

  
  

2
1

2 2 2 2 2 2

2 2 2 2 2 22

22 2 2 2 2 2

4
tan (a constant)

4 1
tan

4

a xy
K

x y a x y a

x y a x y aa xy
K C c

a xy Cx y a x y a

 
   

   
     

   
 

 Thus, 2 2 20c x y a     which is the equation of a circle with centre at origin and passing 

through the points as stated and is the required streamline. 
 
49. In a two dimensional motion, sinks of strength m is placed at each of the point (-c, 0) and (c, 

0) and a source of strength 2m is placed at the origin. Find the streamlines for the flow field. 
Ans: Here the complex potential is given by  

( ) ln( ) ln( ) 2 ln     w z m z c m z c m z 2 2 2ln( ) lnm z c m z     
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Hence, 2 2 2 2 2ln( 2 ) ln( 2 )i m x y c ixy m x y ixy           

Thus, 1 1
2 2 2 2 2

2 2
tan tan

xy xy
m m

x y c x y
    

  
 

2 2 2 2 2
1

2 2 2 2 2

2 2

tan
2 2

1

xy xy
x y c x y

m
xy xy

x y c x y




   

 
  

2
1

2 2 2 2 2 2 2

2
tan .

( )( ) 4
 

   
xyc

m
x y x y c x y

 

Thus,  constant gives the streamlines. 

Therefore, the streamlines are given by 
2

2 2 2 2 2 2 2

2

( )( ) 4

xyc
k

x y x y c x y


   
  

i.e. 2 2 2 2 2 2 2 2( )( ) 4x y x y c x y kc xy      
2 2 2 2 2 2 2 2 2( ) ( ) 4x y c x y x y kc xy       
2 2 2 2 2 2 2( ) ( )x y c x y kc xy      
2 2 2 2 2 2( ) ( )x y c x y kxy     are the streamlines. 

Further, the flow velocity is given by 

2 2 2

2 2dW mz mz

dz z z c
 



2

2 2

2

| || |

mc

z z c




2

1 2 3

2mc

r r r
  

where 1r , 2r and 3r are the distance of a fluid particle at any point from the sinks and source 

respectively. 

 
Complex potential for the faired entry into a long parallel sided channel. 

50. Show that the complex potential  wz e w  represents a faired entry to a long parallel sided 

channel for an incompressible fluid flow. 

Ans: Given   wz e w  ,                                                  (A) 

where z x iy  ,  w i   

Hence, ix iy i e        

cos ( sin )e i e        (B) 

Comparing real and imaginary parts of (B), it is derived that  

cosx e                                                                   (C) 

and siny e   (D) 

which can be rewritten as  

cosx e   and siny e   (E) 

Therefore, tan
y

x







 tan

y
x





                          (F) 



27 
 

Substituting for   from (F), it is derived that 
sin

tan

y
x

y e
 




   

Thus, the streamlines are obtained from (F) by assuming constant  . 

In particular, 2     yield 

2  xy e       (G) 

and 2    xy e                                                                (H) 

Thus, Equations (G) and (H) together give the stream lines which behave like a faired entry 
into a long parallel sided channel. 
 

Complex potential (irrotational flow in a convergent divergent channel-streamlines are 
rectangular hyperbolas) 

51.Show that the complex potential 1 z
w(z) cosh

a
   represents the irrotational flow in a 

convergent and divergent channel. 

Ans:  Given 1 z
w(z) cosh

a
 .   

Substituting z x iy,  w i ,     the complex potential ( )w z is rewritten as  

x iy c cosh( i )

         c cosh cos ic sinh sin

   
       

which yield x c cosh cos ,  y csinh sin .       

Given the identity 2 2cosh sinh 1,    (C) yields  
2 2

x y
1

ccos csin

   
        

 

Now, constant   yield that the streamlines are rectangular hyperbolas which are convergent 

and divergent channels in a flow.Further using the identity 2 2cos sin 1,     it can be 

derived that  
2 2

x y
1

ccosh csinh

   
        

.  

Thus, constant  yield the equipotential surfaces which are given by  
22

x y
1

          
 

where  and     are constants given by c cos  and csin .        
 

Complex potential for which streamlines are confocal ellipses 
52. Discuss the flow whose complex velocity potential is given by cosz c w , where c is a 

constant. 
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Ans: Given cosz c w  
cos( )x iy c i      

cosh cos ,   - sinh sinx c y c       

Eliminating  , 
2 2

2 2 2 2
1

cosh sinh

x y

c c 
   

Thus, for k   (a constant) yield 
2 2

2 2
1

x y

A B
  ,  

where cosh ,   sinA c B c    are constants. Thus, the streamlines are confocal ellipses 

whose semi-axes are A and B.  

Further, 
2

1 dz dw

q dw dz
  2 2 2 2c z c z   which vanishes when z c  which shows the 

flow speed is infinity at z c  . 

 

Complex potential (circular cylinder in an infinite fluid which is at rest at infinity) 
53. Discuss the motion of a circular cylinder of radius a moving with velocity u along the -x axis 

in an infinite fluid which is at rest at infinity. 

Ans. Assuming the flow as irrotational, there exist a velocity potential ( , )x y which satisfies 

the Laplace equation.  Since the circular cylinder is moving with velocity u along the -x axis 

which is at rest at infinity, the velocity potential ( , )x y satisfies the boundary conditions 

given by  

1
cos ,  0 and 0.

r a r r

u
r r r

  
  

  
   

  
  

Using the condition at r a , the velocity potential can be written in the form   

( , ) cos cos , 
B

r Ar
r

    which using the wall boundary condition yield 
2

.
B

A u
a

   Next, 

using the condition at infinity, it is derived that 20,  .A B ua  Thus, the velocity potential is 

obtained as 
2 cos

.
ua

r

   Next, to obtain the stream function for the flow, we will use the 

two relations
1

.
 


 r r

 


 

Thus, the stream function ( , )r   is obtained as 
2 sin

( , ) .
ua

r
r

    Therefore, the complex 

potential for the flow is obtained as  
2 2

( ) cos sin .
ua ua

w z i i
r z

       
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Complex potential (Flow past a circular cylinder in the presence of circulation, 
application of Blasius theorem) 

54. Find the force and moment exerted on a circular cylinder of radius a  centre at origin in a 

uniform stream of speed u  with circulation . 

Ans: The complex potential for the uniform flow past acylinder of radius a   with circulation 

  is given by 
2 2

2
    ( ) ln 1

a dw a i
w z u z i z u

z dz z z

    
          

   
 

Hence, by Blasius theorem 

 

22 2

22 2

           = 2 Residue of integrand  at 0 = 2 (2 )=2 u.
2 2

c

dw i ua
Y iX dz u dz

dz z z

i z i iu

 

   

          
   

    

  
 

 Further, the moment M is given by 

Re 0.
2

dw
M z dz

dz

     
 

 

Complex potential (Uniform flow past a circular cylinder in the presence of circulation) 
55. Find the stagnation point associated with the flow field for which the complex potential is 

given by  2( ) ln .w z u z a z i z     

Ans:  The complex potential for a flow field is given by  

 

2

ln
ua

w uz i z
z

   

  Thus, in the polar co-ordinate system, the complex potential ( )w z yields 

2 2 2

2 2

1
cos 1 cos ,  1 sin .r

a a a
u r q u q u

r r r r r r
     


       

                      
 

1/ 22 2
1

Thus,  2 sin .
r a

r a

q u
r r r

  




                    
 

Near a stagnation point speed vanishes, which yields  2 sin 0u    . Therefore, when there 

no circulation, 0   which gives that stagnation points are for 0,  . On the other hand, 

in the presence of circulation, the stagnation points are given by 

sin
2ua

 
  

which is possible only when sin 1 or 2 .au     
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Case 1:   For 2 sin 1.au      

Here, the stagnation point lies on the cylinder on a line below the centre parallel to x-axis. 

Case 2: 2au  , in this case sin 1.    Here, the stagnation point coincides at the bottom 

of the cylinder. 

Case 3: If 2 ,au  then there is no stagnation point on the cylinder. However, the stagnation 

point will lie above the cylinder for 0   and below the cylinder for 0  . 

 

Superposition of complex potentials does not represent individual flow patterns 

56. Prove that the complex potential  2
0( ) ln( )   W z u z a z m z z  does not represent the 

flow past a cylinder in the presence of the sink. 

Ans: Given  2
0( ) ln( )   W z u z a z m z z  2 2

0

1   


dW m
u a z

dz z z
 

It is obvious that at 0 ,z z  the flow does not represent a uniform flow past a cylinder. 

Further, the flow speed should be 2 sinq u   on the boundary of the cylinder at z a  in 

case of uniform flow past a cylinder which is not the case here. 
 

57. Show that the complex potential  2
0( ) ln( )   W z u z a z m z z  does not represent the       

uniform flow past a cylinder of radius a in the presence of a source of strength m located at         

0z z . 

 Ans: On the circle | |z a , the stream function for the flow is not a constant which ensures 

the cylinder is not a stream line.  
 
 Note: Criteria for additive property of sources in an uniform flow: When no boundaries 

occur in the fluid, the motion due to an uniform flow, any number of source can be obtained 
by addition of the corresponding complex potentials. 

 

 Complex potentials for vortex of strength k.  
58. Describe the irrotational motion of an incompressible fluid whose complex potential is given 

by ( ) lnw z ik z . 

Ans: Given ( ) lnw z ik z ln ln  iik re ik r k   

k    , lnk r   

constant  yields constantr  , which says that streamlines are concentric circles with 

canter at origin. On the other hand,  constant yields lines through origin cutting the 

circles orthogonally. 
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Complex potentials for irrotational flow produced by a line vortex 

59. Show that the complex potential  ( ) 2 ln  w z i z yield a singular distribution of 

vorticity ( )x  


concentrating at origin.  

Ans:  ( ) 2 ln  w z i z  

   2





 
,     

ln
2

r



 
 

Writing 2 2

0
lim ln( )

4
r




 

2
2

2

1

r r r
 

  
     

2

2 2 20
lim ( ),

( )
x

r





  


yields

( )x  


which shows that there is a singular distribution of vorticity ( )x  


 

concentrated at the origin.The complex potential ( )W z  describes the irrotational flow 

produced by a line vortex of strength  concentrated at the origin. 
 

60. The complex velocity potential  ( ) 2 ln W z i z describes the irrotational flow produced 

bya line vortex of strength   located at 0z  . 

Ans: Given ( ) ln
2

i
W z z





 \

ln
2

ii
i re  




   ln
2

i
r im




   

ln
2

r



  2 2

0
lim ln( )

4
r




   

Thus, 
2

2
2

1

r r r
 

  
     

2

2 2 20
lim

( )r





( )x   

Hence, ˆ( )x k  


, which says that the vorticity is ( )x    concentrated at the origin. 

Here   constant yields, r  constant, which says the stream lines are circles with center at 

origin and the flow speed is 
1

2

 
 

rq
r r


 

. 

 

Application of Joukowski Transformation (Uniform flow past an elliptic cylinder) 
61. Using the circle theorem, find the uniform flow past an elliptic cylinder with a and b being 

the semi-major and semi-minor axes and centre being at the origin. 
Ans:  In the z-plane, the complex potential for uniform flow past a circular cylinder of radius                   

  2a b   is given by  

    
2( )

( )              (A)
4

a b
w z U z

z

 
  

 
 

Now, the transformation   
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   2 2 2 2 21
, where              (B)

2
Z z z c c a b      

maps the region outside an ellipse with a, b being the major and minor axes in the z-plane on 

the region outside a circle with centre being at origin and radius   2. r a b  in the z-plane. 

Thus, putting for z from (B) in (A), it is derived that  

2 2 2 2
2 2 2 2

22 2

2 2 2 2

( ) ( ) ( )
( ) =

2 2 44( )

( )
                                                                  = .

2

                 
       

          

u a b u a b z z c
w z z z c z z c

cz z c

u a b z z c z z c

a b a b
 

Now substituting cosh  and using the results z c   
2 2 2 2cosh sinh ,  cosh sinh ,i iz z c c c ce z z c c c ce                

  0 0( ) ( )
0( ) ( ) 2 ( ) cosh( ).        i iw z u a b e e u a b     

 

Hence, 0( ) ( ) cosh( )w z u a b     , where 0

1
cosh ,  ln

2

a b
z c

a b
       

 is the uniform 

flow past an elliptic cylinder. 

 
Application of Blasius theorem to uniform flow past an elliptic cylinder 

62. Find the force and moment due to the uniform flow past an elliptic cylinder. 
Ans: The complex potential associated with the uniform flow past an elliptic cylinder is 

given by 0( ) ( ) cosh( )w z u a b      

where 2 2 2
0

1
cosh ,  ln ,  

2

a b
z c c a b

a b
        

 

0

0 0 2 2

sinh( )
( )

sinh

( )
                                       cosh sinh .


   

 
  

 

dw dw d dw dz
u a b

d ddz d dz c

u a b z

c z c

 
  

   

Now 
2

22 2
1 ...

2

z c

zz c
  

  

0

0 0

22 2
220 0

2 2

sinh sinh( )
Therefore, ... ... .

2

c c edw u a b dw
e A e

dz c z dz z


  

               
      

Thus, by Blasius theorem, 
2

1
0.

2 c

dw
X iY i dz

dz
     

   
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 

0

0

2 2 2 2 2
2 0

2

2
2

( ) sinh
Further,  Real part  = 2

2 2

( )
                                                                         = 1 .

2





        
   

   
 

c

u a b edw
M iN dz i c

dz c

i u a b
e

c





  


 

Writing 0 0 0i     

 0

2
2

0 0

( )
1 (cos 2 cos 2 )

2
     

 
i u a b

M iN e
c

    

Therefore, 0

2
2

0 0

( )
sin cos        (C)

u a b
M e

c
     

 
 

We have 0 0 0

1
ln

2

a b
i

a b
         

 

Further, 0

2 2
22 2

2

( )
                   (D)iu a b a b

u u e
c a b

     
 

Hence from (C) and (D) 2 2 2( ) sin cos .M a b u      
 
Application of conformal mapping  

63. Discuss the flow associated with the complex potential given by 2 .w iu Z   

Ans. Writing  2 2 2 2 21
,         

2
Z z z c c a b     . 

 
 

 
 

 
 

 

2
2 2

2 2
2 2 2 2

2 2 2 2 2 2 2 2

2 2 22 2 2 2

44
Thus, ( ) =

4 2 4 4
                  = = .

i i

iu z z ciu
w z

z z c z z c

iu z z c z z c iu c e iue

ca b a b

  

 
  

   

      


 

 

Result:The streamlines associated with the general motion of a cylinder in two dimensions is 

given by 2 2( , ) ( )
2

w
x y ux vy x y c      where ( , )u v  are the components of linear velocity 

and w  is the angular velocity. 

 

Complex potential (Elliptic cylinder rotating in an infinite mass of fluid) 

64. Find the complex potential and stream function associated with an elliptic cylinder rotating in 
an infinite mass of liquid which is at rest at infinity. 



34 
 

Ans: Let the cross-section of the elliptic cylinder be 
2 2

2 2
1

x y

a b
  where a and b are the semi-

major and semi-minor axes. Let    be the boundary of the cylinder. Then the 

transformation  

coshz c  yields cosh ,  sinh .a c b c    

Since the cylinder is rotating with angular velocity  , the general motion is of the form  

2 2( ) ,                                                                        (A)
2

  x y B
  

where B is the constant to be determined. Further, assuming 
2 2 2 2

2 2

     ( ) ( ) = ( 2 )

2 ,    ( )                                                  (B)

W z iAz i iA x iy iA x y ixy

Axy A x y

 

 

         

    
 

      Comparing (A) and (B), it is derived that 

2 2 2 2( ) ( )
2

A x y x y B


      

which is rewritten as  
2 2

1

2 2

x y

B A B A
 

 
        
   

 

and is equivalent to
2 2

2 2
1.

x y

a b
   

      Thus, 2 2,  
1 1
2 2

B B
a b

A A 

 
 

 

2 2 2 2( ) ( )
2

a b A a b


      

Hence, from (B) it is derived that    
2 2 2 2

2 2
2 2 2 2

,  ( ).
2

a b a b
xy x y

a b a b

  
    

          
 

Result:Let the equation of boundary of the cross-section of a cylinder containing liquid is 

given by zz f (z) f (z)    where f '(z)  has no singularities within the cross-section. Then 

the complex potential associated the cylinder containing the fluid which rotates about an axis 

through the origin parallel to the generators is given by w(z) i f (z).   Then, zz 2    on 

the boundary. 

 
Complex potential (Elliptic cylinder rotating in an infinite mass of fluid) 

65. Using the above result, show that 
2 2

2
2 2

( )
2

i a b
w z z

a b

  
   

 is the complex potential associated 

with the elliptic cylinder which rotates about an axis through the origin and is parallel to the 
generator. 
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Ans. The equation of an ellipse is given by 
2 2

2 2
1

x y

a b
   which can be rewritten as  

   2 2

2 2
1

4 4

 
 

z z z z

a b
where ,   y .

2 2

z z z z
x

i

 
   

      Thus, the equation of the ellipse is rewritten as  

   2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

    b z z 2zz a2 z z 2zz 4a b

(b a )z (b a )z 2zz(b a ) 4a b

a b a b a b
zz (a b )z (a b )z  (a b )z (a b )z

a b a b a b

zz f (z) f (z),

     

      

           
  

  

 

2 2 2 2
2

2 2 2 2

1 a b a b
where   f (z) z .

2 a b a b

 
    

 

Thus,
2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 2 2 2

1 a b a b i a b a b (i )
w(z) i f (z)=i z = z

2 a b a b 2 a b a b

                        
is the complex 

potential for flow inside the cylinder where the constant term may be taken as zero without 

loss of generality. Therefore 
2 2

2
2 2

i a b
w(z) z

2 a b

  
   

  is the required complex potential. 

Potential flow between two concentric cylinders
 

66. Find the velocity potentials associated with the flow between two concentric cylinders when 
the inner cylinder is moved suddenly with velocity u perpendicular to the axis of the cylinder 
with the outer one being kept fixed. 

 Ans. Assuming that the flow is irrotational within the cylinders, the corresponding velocity 

potential ( , )r  satisfies the Laplace equation.  Assuming that the inner cylinder is of radius 

a and outer cylinder is of radius b, the boundary conditions on the cylinders are given by 

 cos ,  0.
r a r b

u
r r

 
 

 
  

 
 

 Here, the velocity potentials are assumed to be of the form 

( , ) cos sin
B D

r Ar Cr
r r

            
   

 

      Using the boundary conditions, it is derived that  
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2 2

2 2

2 2 2 2

         cos sin cos

and    cos sin 0

which yield  , 0, 0,  0.

Solving the above set of equations for A, 

B D
A C u

a a

B D
A C

b b

B B D D
A U A C C

a b a b

  

 

          
   
         
   

                      
       

2 2 2

2 2 2 2

B, C, D it is derived that 

                        ,   and 0.
Ua Ua b

A B C D
b a b a

   
 

 

2 2

2 2

2 2

2 2

Thus,  ( , ) cos .

Further, it can be easily derived that the stream function for the flow is given by 

            ( , ) sin .
-

Ua b
r r

b a r

Ua b
r r

b a r

  

  

 
    

 
  

 

 

 
Plane progressive gravity waves  

67. The surface profile associated with the motion of a plane gravity wave is given by        

( , ) sin( )x t a kx t   . Determine the velocity potential ( , , )x y t .  

Ans: In case of surface gravity wave, the velocity potential ( , , )x y t  satisfies   
2 0  ,                                                                                                                     (A) 

subject to the boundary conditions 

0g
t

 
 


on 0y  ,                                                                                               (B) 

and the kinematic condition 

t y  on 0.y                                                                                                            (C)  

Further, the bottom boundary condition is given by  

0
y





on .y h                                                                                                          (D) 

Since ( , ) sin( )x t a kx t   , the kinematic /dynamic boundary conditions ensure that  must 

be a cosine function. Thus, a separable solution can be assumed to be of the form 

( , , ) ( ) cos( ),x y t f y kx t                                                                                        (E) 

where ( )f y to be determined. 

Substituting for  in equation (A), we obtain f satisfies  
2

2
2

0,
d f

k f
dy

                                                                                                                (F) 



37 
 

whose solution is of the form 

( ) cosh ( ) sinh ( )f y A k h y B k h y                                                                       (G) 

withA, B being arbitrary constants. Substituting for ( )f y from (G) in (E), condition (D) 

yields 

0
df

dy
 on y h  ,  

which yields 0B  . 

Thus, ( , , )x y t  is of the form  ( , , ) cosh ( ) cos( )x y t A k h y kx t                       (H) 

Substituting for   in (B), it is derived that 

cosh 0A kh ga  
cosh

ga
A

kh


   

Further, from condition (C), it is derived that 
2 tanhgk kh                                                                                                                 (I) 

Therefore, the velocity potential  for cos( )a kx t    is given by 

cosh ( )
cos( )

cosh

ag k h y
kx t

kh
 




   , where k satisfies the dispersion relation given in (I). 

 

Examples on plane waves  
68. Find the wave length in terms of wave period in deep water under the small amplitude theory 

and thus find the wave length for a 10s period in deep water. 
Ans: From dispersion relation  

2 gk    (In case of deep water) 
2

2 2
  g

T

 


   
 

2
2 21.56 m 5.12 ft.

2
   

gT
T T



 Therefore, 1.56 m/s 5.12ft/sec.  c T
T


 

Thus, in case of a 10sec. period wave in deep water, 1.56(100)m 156m 512ft.    
69. A plane progressive wave is propagating of depth 100m having a period of 10s and height of 

2m. Find the wave celerity and wave steepness. 
Ans: Assume it is a case of deep water wave. 

Thus 21.56 156mT    

Here 
100 1

156 2

h


   

Thus, the deep water wave assumption is justified. 

Now 1.56 15.6m/sc T   

Wave steepness 
2

0.013
156

H


 
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70. A wave in water 120m deep has a period of 8s and height of 4m. Determine the wave 

celerity,wavelength. 
Ans: Assume deep water wave. 
Thus, the dispersion relation gives 

21.56(8) m 99.82m    

Therefore, wave celerity 1.56 8m/s 12.4775m/sc
T


     

Here 
126 1

99.82 2

h


  , so the deep water assumption is justified. 

 
71. A plane gravity wave is propagating in an infinitely extended channel of average depth 2.3m  

and has a period of 10s. 
Ans: Assumed that it is a case of shallow water. 

Therefore 9.81 2.3 4.75m/sc gh     

and 4.75 10m=47.5mcT     

Now 
2.3

0.048 0.05
47.5

h


    

Hence, the assumption of shallow water wave is justified. 
 

72. A plane progressive wave is propagating from deep sea normally towards the shore with 
straight and parallel contours. In deep sea, the wave length and wave height are given by 
300m and 2m respectively. Find the wave length, wave height and group velocity at a depth 
of 30m near the shore line. 

Ans: Given in a deep water 1 1300m, 2mH    

Since in deep water, 21.56T  /1.56 300 /1.56 13.868sec.   T   

While travelling from deep sea to shallow sea the wave period remains the same. Now, in 
water of depth 30m, assuming shallow water  

2c gh 2
2gh

T


   

2 2 13.868 9.8 30 240.2mT gh      

From law of conservation of energy flux, 

constantgEc   

1 1 2 2

2
1

2 sinh 2

g g

g

E c E c

c kh
c

kh

 

    
 
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In case of deep water, 

/ 2 / 2 300 /13.868 10.912gc c      

On the other hand, in case of shallow water 

9.8 30 17.155m/sgc c gh      

Thus, 17.155 13.86 237.771mcT      

It is not a case of shallow water as / 30 / 337.771 0.126 0.05h      

Further, assuming deep water 
21.56 300.079T    

Therefore, / 30 / 300.079 0.009 1/ 2h      

Hence, it is not the case of deep water. 

Thus, to find k , we have to solve  
2 tanhgk kh   

It can be checked that 0.03k  2 2 / 209.33mk     

Therefore, 2 / 209.33 /13.86 15.103m/sc T    

and 2

2 15.103
1 (1 0.61179) 12.17m/s

2 sinh 2 2g

c kh
c

kh
      
 

 

Therefore, from conservation of energy flux 
2 2

1 1 2 2g gH c H c  

2 2
22 10.822 12.17H    

2 1.886mH   

Therefore, wave height at depth of 30m is 1.866m. 
 

73. A plane progressive wave in water of 100m deep has a period of 10s and a height of 2m, 
when it is propagated into water of depth 10m without refracting. Assuming energy losses 
and gained are ignored, determine the wave height and water particle velocity and pressure at 
a point 1m below the still water level under the wave crest. 
Ans: Assume the wave propagating in deep water. 

Thus, 21.56 m 156mT    

Now / 100 /156 1/ 2h     

Thus, deep water assumption is justified when water depth 10m,  10sh T  , from the 

dispersion relation 2 tanhgk kh   yield 
2 2

tanh
2

gT h
 

  

Whose is solved to obtain 
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93.3m  2
0.0673k




    

Now  
1 2

1 0.873
2 sinh 2

kh
n

kh
    
 

 

Now from law of conservation of energy then  

0 0( / ) 1.97mg gH H c c   

where subscript zero refers to waves in 100m deep. At appoint 1m below the still water level 

under the crest cos( ) 1 and 1.kx t y    Hence the hydrodynamic pressure at 1y  , under 

the crest is given by  

2

cosh ( )
cos( )

2 cosh

1000 98 1.97 cosh(0.0673 9)
  (100)(9.80)( 1) 19,113N/m

2cosh(0.0673) 10

gH k y h
P gy kx t

kh

      
 

   
    



 

Further, water particle speed at a point 1m below the crest is 

cosh ( )
1.01m/s

sinh

H k h y
u

T kh

 
 

 
 

74. A wave in water of 2.3 deep has a period of 10s and a height of 2m. Calculate the wave speed 
and wavelength. 
Ans: Assuming that a shallow water wave is propagating. 

Thus  9.81 2.3 4.75m/sc gh     

and = 4.75 10m 47.5mcT     

Now 
2.3

0.048 0.5
47.5

h


    

Thus, the shallow water assumption is justified. 
 

75. A wave in water of 100m deep has a period of 10s and height of 2m. Determine the wave 
celerity, length and steepness. 
Ans: Assume deep water wave is propagating. 

Thus 156mcT   1.56 15.6m/s   c T
T


 

2
Now wave steepness 0.013

156

H


   . 

76. A tsunami wave is propagating whose period 15min.  and height is 0.6m at a depth of 3800m 
Determine the speed of propagation of the wave along with the wavelength.  
Ans: Assume the case of shallow water waves. 

9.81 3800 193m/s (695km/hr)   c gh  
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193 15 60m 1,73,700m    cT  

Now 
3800

0.021 0.05.
1,73,700

  
h


 

Thus, the shallow water wave assumption is justified. 
 
77. Determine the dispersion relation for a plane progressive wave propagating at the interface of 

two superposed fluids, which are bounded above and below, assuming that the upper fluid of 

density 1  and depth 1h , whilst the lower fluid is of density 2  and depth 2h . 

Ans: Let cos( )a kx t   is the fluid interface and 0y   is the mean interface. 

Thus, the velocity potentials for the upper and lower layer fluids are the forms 

1 1 1cosh ( )sin( ),           0A k h y kx t h y               (1) 

2 2 2cosh ( )sin( ),           0A k h y kx t h y              (2) 

Using the continuity of velocity and pressure at the interface is same, the linearized  interface 
conditions are given by 

1 2
1 2       on  0,g g y

t t

                  
                     (3) 

and 1 2       
y y

  


 
                               on 0y                        (4) 

From (3) and (4), 
2 2

1 2
1 1 2 22 2

    on   0y yg g y
t t

    
    

          
 

Substituting for 1  and  2  in (4), it  can be easily derived that  

1 2sin sinA kh B kh   

and 2 2 1

1 1 2 2

( )

coth coth

gk

kh kh

 
 




 1 2

(1 )

coth coth

gk s

s kh kh





 

Now in case of deep water, 1 21, 1kh kh  , which yield  

2 (1 )

1

gk s

s
 




 

Further, in case of deep water, 1 21, 1kh kh  , which yield  

2 1 2
2

1 2

(1 )gk s h h

h sh
 


  

 
78. Determine the wave dispersion relation for wave propagating in an infinitely extended 

channel in a two-layer fluid of density 1  and 2 having a free surface and an interface. The 

upper layer is assumed to be of depth h  and lower layer is of infinite depth. 
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Ans: The velocity potential   satisfies 2  in the fluid region along with bottom boundary 

condition. 

Let 0z   be the mean interface and z h  be the free surface. 

On the mean free surface, 1  satisfies  

2
1 1

2
0   at   g y h

t y

  
  

 
 

On the mean interface, 

1 2

y y

  


 
 

and
2 2

1 2
1 22 2

   on   0y ys g g y
t t

  
  

      
 

The velocity potentials  1  and 2  satisfies the Laplace equation and bottom boundary 

conditions  

1grad 0  as  y     

It can be easily derived that 

2 cos( ),           0kyAe kx t y       

 1 cos( ),           0ky kyBe Ce kx t y h       
Using the conditions at free surface and the interface, it is derived that 

A C B  and 
2

2 2 1 2
2

1 2 1 2

( )(1 ) 1 )
,   

( ) ( ) coth

kh

kh

gk e gk s
gk

e s kh

  
   





  
  

   
. 

 
One dimensional standing waves in a channel (small amplitude gravity waves) 

79. Consider the propagation of standing wave in a one dimensional channel of uniform depth h

and length L . Assuming the wave profile is of the form cos cosa kx t  . Find the 

corresponding velocity potential. Thus discuss the various wave modes and the general 
nature of the wave profile and velocity potential. 

Ans: Assuming the small amplitude approximation, the velocity potential ( , , )x y t  satisfies 
2 0  , subject to the surface boundary condition is of the form  

0  on  0t g y    and 0   on  0y t y     

Further, the bottom boundary condition is given by  

0  on  .y y h     

Further, assuming the channel is extended along x-axis from 0x  to x L , no flow 

condition on the wall yields  

0   on 0,x L
x


 


. 
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As in case of Example 1, here the velocity potential ( , , )x y t satisfies Eq. (A) and boundary 

condition (C) is obtained in the form  
( , , ) cosh ( ) cos sinx y t A k h y kx t    

Since,   satisfies boundary conditions (D), 

so, ,   1, 2,.....
n

k n
L


   

Further, the use of the free surface condition leads to 

cosh

ag
A

kh
 and 2 tanhgh kh  . 

Further, n

n
k

L


  will yield various wave modes associated with the wave motion. 

 

Two dimensional standing waves in a channel (small amplitude gravity waves) 

80. Consider the propagation of standing wave of the form ( , , ) cos cos cos , x zx z t a k x k z t   in 

a channel of uniform depth h, length a and width b. Find the velocity potential associated 
with the wave motion. 
Ans: Recapitulating, in this case, the velocity potential satisfies  

2 2 2

2 2 2
0.

x y z

    
  

  
                                                                 (A) 

The surface boundary conditions are given by  

0  on  0,t g y                                                                    (B) 

0   on  0y t y                                                                     (C) 

Further, the bottom boundary condition is given by  

0  on  .y y h                                                                          (D) 

Assuming the channel walls are at (0, ),  (0, )x a z b  , the wall boundary conditions are 

given by  

0  at (0, )

0  at (0, )
x

z

x a

x b




  
  

                                                                   (E) 

Proceeding in a similar manner as in Example 1, it is derived that 

( , , ) cosh ( )cos cos sinx zx y t A k h y k x k z t                       (F) 

The wall boundary conditions yield 

,   ,   , 1, 2,...x z

n m
k k m n

a b

 
                                              (G) 

Further, substituting for   from (F) in (A), it is derived that  
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2 2
2 m n

k
a b

        
   

mnk   (say). 

Substituting for   in the surface boundary condition, it is derived that 
2 tanhgh kh   

and
cosh ( )

cos cos sin
cosh x z

ag k h y
k x k z t

kh
 




  

cosh ( )
sin sin sin

cosh

ag k h y n x m z
t

kh a b

  


        
   

 

So for each , ,m n  we have a velocity potential. Hence the superposition of all velocity 

potentials is also a solution which is given by 

1 1

cosh ( )
sin sin sin

cosh
mn mn

m n mn

a g k h y n x m z
t

k h a b

  


 

 

        
   

 
 

 

Phase and group velocities for gravity waves 

81. The dispersion for plane gravity wave in finite water depth is given by 2 tanhgk kh   
Find the relation group velocity in terms of phase velocity. 
Ans: The phase velocity c c and the group velocity gc  are given by  

c
k T

 
  and g

d
c

dk


 ,  

Given 2 tanhgk kh   

or 22 tanh sec
d

g kh gkh h kh
dk

    

 

1 2 1 tanh 2
tanh 1 = 1

2 sinh 2 2 sinh 2

1 2 2
              = 1 = 1 .

2 sinh 2 2 sinh 2

          
   

       
   

g

d g kh gk kh kh
c kh

dk kh k kh

kh c kh

k kh kh


 


 

In case of deep water 1kh  , Therefore 2gc c .  On the other hand, in case of shallow 

water waves, 1kh   which yield .gc c  

 
Phase and group velocities for capillary gravity waves 

82. The dispersion relation 2 2(1 ) tanhgk Mk kh    associated with the plane capillary gravity 

waves is given by 2 2(1 ) tanh , where ,K k Mk kh K g M T g     , T  being  surface 

tension force. Find the relation connecting phase and group velocities c and gc respectively. 
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Ans: From dispersion relation  

 

 

 

2 2

2 2 2

2 2 2
g 2

2 2 2
2

2

2

(1 ) tanh

or 2 (1 ) tanh (1 )sec

or c (1 3 ) tanh (1 )sec
2

        = (1 3 ) tanh (1 )sec
2 (1 ) tanh

1 3 2
        = =

2k 1 sinh 2

 

   

   

  


 
  

gk Mk kh

d
g Mk kh kh Mk h kh

dk
g

Mk kh kh Mk h kh

g
Mk kh kh Mk h kh

gk Mk kh

Mk kh

Mk kh









 2

2

1 3 2

2 1 sinh 2

 
  

c Mk kh

Mk kh

 

Therefore, in case of deep water, 1kh  which yields     2 21 3 1 .
2

  g

c
c Mk Mk  

On the other hand, in case of shallow water,      2 21 2 1 .
2

  g

c
c Mk Mk

 
 
Capillary gravity wave 

83. In case of capillary gravity wave, find the length of the smallest possible wave in terms of         

surface tension parameter T . Thus, find  for        
39.8m/s,  0.074N/m  and 1000kg/mg T    . 

 Ans: From dispersion relation, in case of deep water 2(1 )K k Mk  tanhgk kh 

 

Therefore, 2 2 2/ (1/ )c k g k Mk  

 

22 ( 1/ )
dc

c g k M
dk

     

Therefore, 0
dc

dk


 
21/

1/ /

M k

k M g T

 

  
 

Therefore, /k g T  

and
1/2

2 4
/

/
m

g T Tg
c g T

g T


 
 

    
 

 

1/4
4

m

Tg
c


 

   
 

 

1/22 / 2 ( / )m k T g       

Next, for 2 39.8m/s ,  1000Kg/m ,  0.074N/m,  23cm/s,  1.7cmm mg T c      . 

This is the minimum wave length of gravity wave possible in water. 
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Wave oscillation in a closed basin and resonant period  
84. A section of a closed basin has a depth of 8m  and a horizontal length of 1000m when 

resonance occurs in this section at the fundamental period, the height of the standing wave is 

0.2m .  Determine the resonant period and wave length of the wave. 

Ans:  Given h 8m,  L 1000m,  H 0.2m   . 

Assuming shallow water wave,  the fundamental period of oscillation is given by  

2L 2000
T 225.76s

gh 9.81 8
  


   

 Now, c cT= 9.8 8 225.76m=2000m.
T


       

Hence,  
8 1

h /
2000 20

   .  Thus, the assumption of shallow water is justified.  

 

Fundamental period in a one dimensional lake  

85. Derive the fundamental period of oscillation for a lake of length 15miles having average 

depth 22ft . 

Ans: 2Given L 15miles, h 22ft,g 32ft / sec . Further, it may be noted that1mile 5280ft.     

Therefore,
2L 2 5280 15

T 5968sec =99.5min
gh 32 22

 
  


 

2 15 1609
Alternately, T s 99.5min (using the formula 1 mile = 1.609 km).

9.8 22 0.3048

 
 

   
 
Long wave equation in a channel of variable cross-section 

86. Derive the equation of long wave in channel of variable cross-section A(x, t)  which is 

infinitely extended along the x-axis are small compared to the wavelength. 

Ans: Let (u, v, w) be the components of the velocity q


 with u being large compared to v and 

w. Thus the x-component of Euler’s equation of motion yields  

u 1 p
                                      (1)

t x

 
 

  
 

and the z-component yields 

1 p
g                                       (2)

z


 

 
 

where the quadratic terms are ignored under the assumption of small amplitude wave theory. 
Eq. (2) on integration yields 
p gz f (x, t)    
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Assuming at the free surface z (x, t),  the hydrodynamic pressure is the same as the 

constant atmospheric pressure 0P , Eq. (2) yields 

0p p g( z)                                         (3)     

Next, using the value of p from Eq. (3) in Eq. (1), equation of motion for long wave is 
obtained as 

u
g .                                            (3a)

t x

 
 

 
 

Next, to derive the equation of continuity in case of long wave, consider a volume of liquid 
bounded by two planes cross-section of the channel at a distance dx apart. Thus in unit time, 

the volume of liquid through one plane of the channel is x(Au) . Further the volume of liquid 

flowing through the other plane of the channel is x dx(Au)  .  Thus, the net change in volume 

of liquid flowing between the two planes per unit time is  

x dx x

(Au)
(Au) (Au) dx.                 (4)

x


 


 

Further, the rate of change in volume of liquid per unit time between the two planes is
 

  

A
dx.                                                    (5)

t




 

From the law of conservation of mass, rate of change of mass within the two planes = net 
change in mass flowing between the two plane per unit time.Assuming the fluid is 
incompressible, density is taken as constant. Thus, Eq. (4) and Eq. (5) yield  

A (Au)
0.                                     (6)

t x

 
 

 
 

Eq. (6) is the equation of continuity for long wave. Thus, Eqs. (3a) and (6) yield the 
linearized long wave equations under shallow water approximation in an infinitely channel of 
variable cross section. 
 
Long wave equation in a channel of finite width b 

87. Generalise the equation of continuity discussed in Ex:1 for a channel of width b 

Ans: Let 0A be the cross-sectional area of the fluid in the channel in equilibrium position. 

Assuming  y (x, t)   as the surface elevation, the change in the cross-sectional area due to 

wave action is  
A ' b   

Thus, equation (6) in Ex. 23 becomes   

(b ) (Au)
0                                     

t x
(Au)

or     b 0                                (7)
t x

  
 

 
 

 
 
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Differentiating Eq. (7) w.r.t. time t, we get 

 

2

2

2

2

2

2

2

2

(Au)
 b 0

t t x

u
or    b A 0   

t x t

u
or    b A g 0

t x x

 or   b g A 0.
t x x

         
         

             
         

 

If the channel is of uniform cross-sectional area 0A A , then 

2 2
0

2 2

gA
 0

t b x

   
 

 
 

Thus, the speed of propagation in channel of uniform cross section 0A is 0c gA b.
 

 
Long wave propagation in a channel 

 

88. Derive the long wave equation is a channel of infinite length in water of finite depth, 
assuming wave amplitude is very small. 
Ans: It is assumed that the z-component of velocity is very small compared to the x and y 
components of velocities.  
Thus, in case of 2-D wave equation, here, the long wave equation of motion yields 

 

u
           g 0                             (A)

t x
v

and      g 0                             (B)
t y

 
 

 
 

 
 

 

Further, proceeding in a similar manner as in case of channel of variable cross-section, the 
Eq.of continuity for linear long wave yield 

h (hu) (hv)
0                     (C) 

t x y

  
  

  
 

Assuming total water depth  0h h (x, y, t)    where 0h  is the water depth from mean 

surface till bottom, Eq. (C) yields  

0 0(h u) (h v)
 0                  (D) 

t x z

 
  

  
 

which in case of constant depth 0h becomes  

0 0

u v
 h h 0.                     (E) 

t x z

  
  

  
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Eliminating u and v from (A), (B) and (C), the long wave equation in water of uniform depth 
is obtained as 

2 2 2

2 2 2 2

1
  

x y C t

     
 

  
 

where 0C gh .
 

 
Long wave reflection due to change in depth near a wall  

89. A plane wave is reflected due to abrupt change in water depth from depth 1h  to depth 2h  

which is at a finite distance l  from a sea wall. 
Thus, near the wall 0x   

Therefore, 
 Re ,     0

( , )
cos ( ) ,    0





    
  

ikx ikx i t

i t

e e x
x t

T k x l e x l




  

Continuity of pressure and velocity at 0x  , yield 
1 cos . R T kL  
Further, 1 2(1 ) sinh ik R h T kL   

which yield 

1 2 2 1

1 2 2 2 2 2 1

2 cot
,  

cos sin cot


 

 

h k L i h h
T R

h k L i h k L k L i h h
 

 

Long wave reflection by a finite dock near a wall 
90. Wave reflection by a finite dock near a wall (Shallow water approximation) 

 A rigid dock of width a   is located at a distance L from a vertical wall in uniform water 
depth.  Assuming the at the sea wall is at x a L   and dock is located at a x a   . A 
shallow water plane wave is incident from x    

Assuming  
 Re ,        

cos ( ) ,  

ikx ikx i t

i t

iga
e e x a

iga
T k x a L e a x L









 



    
    


 

where R  is the reflection coefficient under shallow water approximation then find R  
Ans: Below the plate under shallow water approximation 

  ,        i tiga
Ax B e a x a


      

Now, continuity of velocity and pressure at x a   yield the boundary condition 

1 2 1 2,   at    x x x a     
 Thus,    Re ,  Re      ika ika ika ikae Aa b ik e A  

Further, cos ( )Aa B T k a L    

Further, cos ( ),  cos ( ),  Re         ika ikaA kT k a L Aa B T k a L Aa B e  
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which yields  1
Re cos ( ) .

2
   ika ikaB e T k a L  

The set of equations can be solved to find R. 

 

Long wave scattering by a finite dock 
91. A two-dimensional rigid dock of width 2a which is moored in water of uniform depth. The 

sides of the dock at .x a  A shallow water plane wave  
( ) ,            i kx tae k gh   is incident from x    

Assuming  

 
( )

Re ,        

,                       

ikx ikx i t

i kx t

iga
e e x a

iga
Te x a









 



    
 


 

where R  and T are the reflection and transmission coefficients. Find  and TR . 
 

Now below the plate, under shallow water approximation  

( ) ,    i tiga
ax b e a x a


       

Using the continuity of mass and pressure at x a  , we obtain 1 2 1 2,      at x x x a        

Thus,       
Re

Re .

ikx ikx

ika ika

e x b

ik e









   

 
 

Further,  
e

.

ikx

ika

T x b

ikTe





 


 

Therefore, 
2 2

,      
1 1

ika ikaikae e
R T

ika ika

 

 
 

, ,    .
1


 



ika
ikaike

e
ika

   

 

Particle kinematics of a plane gravity wave 

92. For a plane wave cos( )a kx t   , find the components of particle speed and thus find the 

speed of the particle in case of deep water. 

Ans: In finite water depth, cos( ).a kx t    

2

cosh ( ) cosh ( )
Thus, sin( )  sin( )

cosh cosh
cosh ( ) cosh ( )

             sin( ) sin( ).
tanh cosh sinh

ag k h y ag k h y
kx t kx t

kh kh
ag k h y a k h y

kx t kx t
gk kh kh k kh

  
 

  

 
   

 
   

 

cosh ( ) H cosh ( )
cos( )= cos( ).

sinh sinh

 
  x

a k k h y k h y
kx t kx t

k kh T kh

   
 

sinh ( ) H sinh ( )
sin( )= sin( ),

sinh sinh

 
  y

a k k h y k h y
kx t kx t

k kh T kh

     
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In case of deep water, 1. Thuskh   

H H
cos( ),  sin( )   ky ky

x ye kx t e kx t
T T

     2 2 H
.    ky

x yq e
T

   

Thus, near the free surface at 0,y  the particle speed is given by .q H T Thus, each 

component of velocity has three parts, namely (i) the surface deep water particle speed, (ii) 
particle velocity variation over the vertical water column at a given location and (iii) passing 
term dependent position in wave and time. 
 

93. For the wave profile cos sinH kx t   
In a channel of depth h, determine the maximum water particle velocity and below the nodal 
point under small amplitude shallow water approximation. 
Ans:  cos sinH kx t   

cos ( ) cos sin

2 cosh

gH k h z kx t

kh





  

cos ( )
sin sin

2 cosh
2 cos ( ) 1

  sin sin sin sin .
2 sinh

 
 



 

gHk k h z
u kx t

x kh
H k h z H

kx t kh t
T kh T kh

 


  
 

For peak velocity under shallow water depth the nodal point, sin sin 1kx t  , 

max .
2 2 2 2 2

    
H H H H H g

U c gh
T h hT h h h

  


 

 
Long wave resonance in a bay  

94. Under shallow water approximation, find the condition of resonance in a bay. 
Ans: Under shallow water approximation, one dimensional wave equation is given by 

2 2

2 2 2

1

x c t

  


 
 

Near a bay head, standing waves are formed. Thus cos coskx t   
Near bay mouth nodes are formed and near bay head antinodes are formed. 
Assuming bay mouth is at 0x   and bay head is at x l , we have 
 

(0)
During resonance   cos 0 cos(2 1) (2 1)

( ) 2 2

2 4
                             (2 1) (2 1) .

2 4 (2 1)

      

       


kl n kl n
l

l
l n l n

n

  


   


 

Now, for long wave 
4

,   1,2,...
(2 1)

    


l
c T gh T

gh n gh

  

Hence, when 
4

0,   
l

n T
gh

   is the fundamental period for bay oscillation. 

(0) 1

( ) cosl kl





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Long wave oscillation in a closed basin  

95. Derive the relation for period of oscillation in case of long waves propagating in a closed 
basin of length .l  
Ans. Under the assumption of linearized longwave theory, the free surface elevation 
satisfies  

2 2

2 2 2

1
,       c gh

x c t

  
 

 
 

On the channel side walls 0  at 0,   x x l  

Assuming ( , ) cos cosx t a kx t  is a stationary wave solution of Eq. (A), the wall boundary 
condition yield  

sin 0 sin ,  1, 2,...

2
  ,  1,2,..

2 2

    

     

kl n n kl n

n n l
l n

n

 
  


 

Therefore, the phase velocity 
2

,    
l

c gh T
T gh n gh

 
 

Hence, 
2

n

l
T

n gh
  are the period of oscillation.  

96. A section of a closed basin has a depth of 20m and a horizontal length of 2000m. When 
resonance occures in this section  at the fundamental period, the height of the standing wave 
is 0.5m.  Determine the resonant period, the maximum water particle velocity under the 
nodal point. 
Ans:  The fundamental period of oscillation also called the resonant period is given by 

2 2 200 4000
285.71sec.

9.8 20 196
n

l
T

gh


   


 

Further, maximumwater particle velocity 
 

 
Wave oscillation in a rectangular tank under shallow water wave approximation 

97. Determine the period of free oscillation in a rectangular lake of uniform water depth, length 
and width h, a, and b respectively under shallow water approximation. 
Ans:  The two-dimensional linearizedlong wave equation is given by 

2 2 2

2 2 2 2

1
,              (1)c gh

x y c t

    
  

  
 

Assuming motion is simple harmonic in time with angular frequency  , ( , , )x y t is written 

as ( , , ) ( , ) .i tx y t x y e    Thus, Eq.(1) yields 
2 2

2
2 2

0                          (2)k
x y

   
  

 
 

max

0.5 9.8
0.25 0.47 0.55 / .

2 2 20

H g
u m s

h
   
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where .k c Assuming that the walls are located at 0,x a along length and 0,y b along 

width, the wall boundary conditions yield  

0           at     0,              (3)x a
x


 


 

and 0          at     0,  b.             (4)x
y


 


 

The solution of (2) satisfying boundary conditions given in (3) and (4) is obtained as 

0 0

( , ) cos cos                 (5)mn
m m

m x n y
x y A

a b

 
 

 

   

Now substituting for  from (5) in (2), yields 
2 2

2 2
2 2

m n
k

a b


 
  

 
 

Thus, the time period is given by  

2 2 2 2

2 2 2 2

2 2 2 1
= = ,

gh
T

c gh k gh m n m n
gh

a b a b

   


  

 

 

where m and n are referred as the modes of oscillation along the length and width of the 
channel. 
 

Wave oscillation in a circular lake under shallow water approximation 
98. Under shallow water approximation, find the relation for the wave period during resonance in  

a circular lake of radius a and depth h. 
Ans: Consider a circular lake of radius a and depth h. The two dimensional wave equation is 
given by  

2 2 2

2 2 2 2

1
,   c gh

x y c t

    
  

  
                                                   (A) 

In cylindrical polar co-ordinate, Eq. (A), is rewritten as  
2 2

2
2 2 2

1 1
0k

r r r r

   


  
   

  
 ,                                                  (B) 

under the assumption ( , , ) ( , ) i tr t r e      . 

Assuming that the oscillating motion is periodic in , ( , )r   is rewritten as  

( , ) ( ) isr f r e    . 

Thus, Eq. (B) yield 
2 2

2
2 2

1
0

f f s
k f

r r r r

  
       

(C) 

Writing K kr , Eq.(C) can be rewritten as  
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2 2

2 2

1
1 0

f f s
f

k k k k

  
       

                                                         (D) 

Assuming that the wave amplitude is bounded near 0r  , Eq. (D) yield  

cos
( , ) ( )

sins s

s
r A J kr

s


 


 

  
 

 

On the boundary wall of the cylinder 

0  at ,r a
r


 


which gives 

' ( ) 0    for 0,1, 21sJ ka s    

In particular, for 0s   
'

0      ( ) 0J ka  '
0 ( ) 0,J ka  which yield 

2
1.2197, 2.2330,3.2383

a
ka




   

2
0

a


   

We know that cT  / /T c gh                                    (E) 

Hence, from (D) and (E), 

1 2 3

2 2 2
,  ,  

1.2197 2.233 3.2383

a a a
T T T

gh gh gh
  

 
 

Free surface flow inside a rotating circular cylinder 
99. Determine the flow pattern inside a cylinder which rotates about its vertical axis with 

constant angular velocity    and the surface being open to the atmosphere. (Assumethat the 
atmospheric pressure is constant and the flow is in the gravitational field). 
Ans:  Assume that the axis of the cylinder is along the z-axis. Thus, the components of 

velocity are ,    ,   0.u y v x w      Thus, 0
u v

x y

 
 

 
 

which ensures the flow of an incompressible fluid. Hence, Euler equation yields  

2 21 1 1
,    y ,    0

p p p
x g

x y z  
  

     
  

 

which on integration yield  

 2 2 21
,  

2

p
x y gz c


     where c is an arbitrary constant.  

Since constant, at 0atmp p z    at every point on the free surface. It is also zero at 

( , ) (0,0)x y  . Hence .
p

c

  
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 2 21

2
z x y

g
   is the surface of fluid. 

Further, the streamlines are  

2 2

0

constant, constant

    


   

dx dy dz dx dy dz

u v w y x

x y z

 

gives the streamlines for the flow.Further,  2
v u

x y

 
  

 
  yields the vorticity vector which is 

along the z-axis. 

 
Circular Couette flow (Steady viscous flow between two concentric rotating cylinders) 

100.Describe the steady viscous flow between two concentric cylinders which are rotating at 
different angular velocity. 

Consider the steady viscous flow between two concentric cylinders.  Let 1R and 1 be the 

radius and angular velocity of the inner cylinder and 2R and 2 be the radius and angular 

velocity of the outer cylinder.Thus, the equations of motion in the radial and tangential 
dimensions are given by 

 

2
0u 1 p

                     (A)
r r

d rud 1
0.           (B)

dr r dr



 

 

 
  

 

 

Integrating (B) yield     

B
u Ar

r    

Using the boundary conditions  

1 1 1

2 2 2

u R      at r R

u R      at r R




  
  

 

which gives
  2 22 2

1 2 1 22 2 1 1
2 2 2 2
2 1 2 1

R RR R
A ,  B .

R R R R

  
 

 
 

Thus, u is obtained as
 

   
2

2 1
2 1 1 2 1 22

1 2

R1
u R R r

r1 R R


           
. 

This flow is referred as the circular Couette flow. 
 
Note. For an incompressible fluid, the viscous stress at a point is given by 
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 
     

ji
ij

j i

uu
u

x x
  

which shows that   depends only in the deformation rate of the fluid element at a point and 

not on the rotation rate ji

j i

uu

x x




 
. On the other hand, the net viscous force per unit volume 

at a point is given by ( )


   


ij
i

j

F u w
x


. 

Prove that the fluid elements in a solid body rotation do not deform. Thus, prove that surface 
of    constant pressure are paraboloids of revolution. 
Ans: Consider the velocity vector associated with a solid body rotation 

/ 2  and   0 ru r u  . 

The viscous stress r  is given by 

1
0r

r

uu
r

r r r


 


            
 

Thus, the fluid elements in a solid body rotation do not deform. 
Since the viscous stress vanishes, Euler’s Equation of motion is applied for the flow problem. 
Euler’s Equation of motion in cylindrical polar co-ordinate is given by  

2 1r r r
r

u uu u u p
u

t r r r r
 

 
   

    
   

                         (A) 

1r
r

u u u u u u p
u

t r r r r
    

  
   

    
   

                  (B) 

1
( )z

z

u p
u u g

t z



 

    
 

                                    (C) 

Substituting for  0,    ,   0
2

  r z

r
u u u


 

Eqs.(A), (B) and (C) yields 
2

,     0,
 

 
 

u p p

r r



0

p
g

z


 


 

Now 
p p

dp dr dz
r z

 
 
 

2

 
u

dr gdz
r
 

2

4

r
dr gdz

     

2 2 2

1 1 1

2

4

p r z

p r z

w
dp rdr g dz

       

2 22
2 1

2 1 2 1( )
8 2

r r
p p g z z

 
         
   

            (D) 
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Thus, for 2 1,p p  

 
2

2 2
2 1 2 18

z z r r
g


    which is a paraboloid  of revolution. 

Therefore surface of constant pressure are paraboloid of revolution in case of fluid elements 
in a solid-body rotation. It may be noted that the flow is steady in this case. 
Note: Eq.(D) can be rewritten as  

 2 2
2 1 2 1 2 1( )

2
p p u u g z z 

       

2 2
2 2 2 1 1 12 2

p u gz p u gz 
        which suggests that in case of solid body rotation 

containing a viscous fluid in steady that 2p u gz    is not a constant for points of different 

streamlines. 
 

Example of viscous fluid with irrotational motion 
101.Show that the flow does not have any singularity in the entire field and is irrotational 

everywhere. Viscous stresses are present and no net viscous force at any point in the steady 
state. Here, the flow field is viscous but irrotational. 
Ans:  Consider the flow field is given by 

2

,   0,   0,  r ,


   r z

R
u u u R

r which is the velocity distribution of an irrotational vortex. 

Here
1

0z
r r

uu

r z






   

 
 

0r zu u

z r
 

   
 

 

 1 1 r
z

ru u

r r r



 

  
 

21 1 (0)
0

R
r

r r r r 
   

     
 

Therefore , ,(   ) 0x y z     


 

This implies that the flow field is irrotational. 
Next, by definition of viscous stress 

2

2

1 2
0r

r

uu R
r

r r r r



 


             

 

Thus, shear stress exists. However, net viscous force per unit volume at a point is given by  

  0.iF    


 

Hence, the net force per unit volume at a point is zero. This is the flow generated due the 
presence of a rotating cylinder in an infinite volume of viscous fluid which rotates with 

constant angular velocity 2. The above velocity field is also called the steady solution of 



58 
 

the N-S equation satisfying the no-slip boundary condition   at ,  u R r R with R being 

the radius of the cylinder and   is its angular velocity. This flow is not singular. 
 

Steady viscous flow outside a circular cylinder rotating in an infinite body of fluid  
102.Find the velocity distribution of a steady viscous flow outside a long circular cylinder of 

radius R which is rotating with angular velocity   in an infinitely body of fluid.  
Ans:  The result directly follows from the general solution discussed in the previous example 

with 2 2 1 10,  R ,   and R R.        This gives 2u R r , r R,     Here there is no 

singularity in the flow and flow is irrotational in nature. This flow suggests that absence of 
viscous dissipation.  
Ans. See the previous exercise for details 
 

103.Consider the flow generated by rotating a solid circular cylinder of radius r  in an infinite 

viscous fluid whose velocity field is given by  2 2 ,   ,    0,   0r zu R r r R u u              

where R  is the radius of the cylinder and 2  is its constant angular velocity. 

Ans. See the two previous exercises. 
 

Viscous flow within a steadily rotating cylindrical tank  
104.Consider a steady rotation of a cylindrical tank containing a viscous fluid. The radius of the 

cylinder is R and the angular velocity of rotation is  . The flow would reach a steady state 
after the initial transients have decayed. 

Ans.Thus in this case 1 0   at 1R 0  

.  2 2 and R R    This gives from Ex. 1 u r   which says that the tangential velocity is 

proportional to r . 

 
Viscous flow generated by rotating a circular cylinder (rotational flow) 

105.Discuss the flow for the vector field given by  r 0 2u 0,  u r,  u 0.     

Ans: Equation of continuity yields  

  z
r

u u1 1
ru 0.

r r r z
 

  
  

 

Thus, an incompressible fluid flow is possible. Now, the component of vorticity vector about 
z-axis is given by  

r
z r 0

u1 1
w (ru ) 2 0.

r r r


    

 
 

Thus, the flow is rotational in nature.  Equations of streamlines are 
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r z 0

2 2 2
0

dr rd dz dr rdr dz
     ,or =

u u u 0 r 0

rdr 0 r =constant r constant x y constant, z constant.




  



        
 

Thus, the streamlines are circles.Hence, the flow velocity is proportional to the radius of the 
streamlines.Now the circulation around a circuit of radius r  in this flow is given by 

2 2
00

q.ds ru d 2 ru 2 r


          
  

Thus, the circulation is equal to vorticitytimes area. Thus, the flow can be generated by 
rotating a cylindrical tank containing an incompressible fluid. 

 
Irrotational vortex  

106.Prove that in an irrotational vortex given by 2 , u r   the viscous stress is non-zero         

everywhere, whilst the net viscous force on an element vanishes.(Here the flow is irrotational       
everywhere except at origin) 
Ans: The velocity field associated with an irrotational vortex is given by  

,     0,     0,
2 r zu u u

r 


    

where is the circulation around a contour of radius r . Thus viscous stress for the is given 
by 

2

1
0r

r

uu
r

r r r r



 

 
             

 

Thus, the fluid elements undergo deformation. 
The net viscous force per unit volume is given by 

 


   


ij
i i

ij

F
x


 

2

0


 
 j j

u

x x
 

This implies that deformation of fluid element is zero everywhere in case of an irrotational 
vortex. 
Further, from previous exercise, we have  

2

,   ,   0,   0
2

up p p
u g

r r r z


 
 

   
    

  
 

Therefore 
p p

dp dr dz
r z

 
 
 

2u
dr gdz

r
 

 
2

2
dr gdz

r r

 

   

 
 

Integrating between any two elements yields 
2

2 1 2 12 2 2
1 2

1 1
( )

2
p p g z z

r r

 


 
     

 
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2 2
2 12 1

2 12 2
     

u up p
gz gz 

 
 (A) 

Thus between any two points in the flow field, in case of irrotational vortex, the sum of 
pressure head and gravitational head is constant. 

For 2 1,p p  Eq.(A) yield 

2 2
1 2

2 1 2 2

u u
z z

g g
     

which are hyperboloid of revolution of second degree. 
 
 

-----------------------------------------------------THE END-------------------------------------------------- 




